摘要
利用动力系统和微分方程定性理论研究了带载流导体微机电系统动态pull-in阈值。通过对系统轨线的分析,得到该系统集总参数存在唯一的阈值;分析该阈值与系统周期解、pull-in解和趋于平衡态解之间的关系,进一步得到当集总参数超过该阈值时,系统发生动态pull-in。
The dynamic pull-in threshold of the micro-electro-mechanical systems(MEMS) with current-carrying conductors is studied by using the dynamical system and differential equation qualitative theory. Through the analysis of the system orbits, it is obtained that there is a unique threshold for the lumped parameters of the system. The relationship among the threshold, the periodic solution, the pull-in solution and the equilibrium solution of the system is analyzed. Further, when the lumped parameter exceeds the threshold, the system generates dynamic pull-in.
作者
王重阳
贺平安
张建明
张丽俊
WANG Chongyang;HE Pingan;ZHANG Jianming;ZHANG Lijun(School of Science,Zhejiang Sci-Tech University,Hangzhou 310018,China;College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China)
出处
《浙江理工大学学报(自然科学版)》
2020年第3期389-393,共5页
Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金
国家自然科学基金项目(11101371)
浙江省自然科学基金项目(LY15A010021)。
关键词
微机电系统
动力系统
周期解
动态pull-in
micro-electro-mechanical systems
dynamic system
periodic solutions
dynamic pull-in