摘要
为深入研究用户参与V2G后频繁充放电对用户用车时间的约束情况及V2G的可行性,首先在分析了车辆行驶行为的基础上,构建充电负荷模型,并通过蒙特卡洛法基于统计规律计算了电动汽车在无调控状态下接入电网后的负荷情况,通过与原负荷的比对,分析了电动汽车在无调控状态下对电网的影响情况。其次依据研究现状,利用粒子群算法对电动汽车参与V2G的可行性进行了分析。最后,具体分析了电动汽车响应V2G对用户用车时间的限制性因素,提出电动汽车集群响应V2G后对电动汽车出行行为约束的数学模型,在存在博弈关系的电网调控目标及用户便利度目标之间利用维护全局的帕累托最优集搜寻最优解以平衡双侧问题,并进行了算例分析验证。为应对当前电动汽车优化调度及电力系统双侧问题提供新的理论依据。
In order to deeply study the restriction of frequent charging and discharging of V2 G with users participation on the user’s vehicle time and the feasibility of V2 G, this paper firstly constructs a charging load model based on the analysis of vehicle driving behavior, uses the Monte Carlo method to calculate the load of electric vehicle(EV) connected to the power grid without regulation based on the statistical law, and analyzes the influence of EV on the power grid by comparing with the original load. Secondly, according to the research status, the feasibility of EVs participating in V2 G is analyzed by particle swarm optimization. Finally, the paper analyzes the restrictive factors of EV response V2 G to user’s vehicle time, and proposes a mathematical model of EV travel behavior constraint after EV Cluster Response V2 G. The optimal solution is searched by using the global PARETO efficiency between the goal of power network regulation and the goal of user convenience, which is verified by example analysis. It provides a new theoretical basis for solving the current electric vehicle optimal dispatching and the bilateral problems of power system.
作者
张宁
刘晓波
黄少华
陈雄
何智敏
ZHANG Ning;LIU Xiaobo;HUANG Shaohua;CHEN Xiong;HE Zhimin(The Electrical Engineering College,Guizhou University,Guiyang 550025,China)
出处
《电力科学与工程》
2020年第4期32-37,共6页
Electric Power Science and Engineering
关键词
V2G
智能调度
粒子群
帕累托最优
V2G
intelligent scheduling
particle swarm optimization
PARETO efficiency