期刊文献+

四元Heisenberg群上次拉普拉斯算子的m幂次的基本解

The Fundamental Solution for the m-th Powers of the sub-Laplacian on the Quaternionic Heisenberg Group
原文传递
导出
摘要 本文研究了四元Heisenberg群上次拉普拉斯算子的m幂次的基本解,该结论是Heisenberg群上结果的推广.本文利用了四元Heisenberg群上的Fourier变换理论构造了该群上次拉普拉斯算子的m幂次的基本解,并且给出了基本解的积分表示. We discuss the fundamental solution for m-th powers of the sub-Laplacian on the quaternionic Heisenberg group,This result is the extension of the conclusion on the Heisenberg group.We use the representation theory of nilpotent Lie groups of step two to analyze the associated m-th powers of the sub-Laplacian on the quaternionic Heisenberg group and to construct its fundamental solution.
作者 王海蒙 周璇 赵玉娟 Hai Meng WANG;Xuan ZHOU;Yu Juan ZHAO(Department of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing 210013,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2020年第3期229-244,共16页 Acta Mathematica Sinica:Chinese Series
基金 江苏省高校自然科学基金面上项目(18KJD0004)。
关键词 四元Heisenberg群 群上的Fourier变换 次拉普拉斯算子 Plancherel公式 基本解 quaternionic Heisenberg group group Fourier transform Sub-Laplacian Plancherel formula fundamental solution
  • 相关文献

参考文献5

二级参考文献65

  • 1CHANG Der-Chen.Laguerre calculus and Paneitz operator on the Heisenberg group[J].Science China Mathematics,2009,52(12):2549-2569. 被引量:3
  • 2Der Chen CHANG,Jing Zhi TIE.A Note on Hermite and Subelliptic Operators[J].Acta Mathematica Sinica,English Series,2005,21(4):803-818. 被引量:7
  • 3Magnus, W., Obcrhcttingcr, F., Soni, R. P.: Fornmlas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin-New York-Heidelberg, 1964.
  • 4Hormander, L.: Hypoelliptic second-order differential equations. Acta Math., 119, 147-171 (1967).
  • 5Calin, O., Chang, D. C., Tie, J.: Local Nonsolvability for Gruhsin type operators, preprint, (2003).
  • 6Andrews, G., Askey, H., Roy, H.: Special Functions, Encyclopedia of mathematics and its applications #71,Cambridge University Press, Cambridge, United Kingdom, 1999.
  • 7Beals, R., Gaveau, B., Grcincr, P. C.: Complex Hamiltonian mechanics and parametrics for subclliptic Laplacians, Ⅰ,Ⅱ,Ⅲ. Bull. Sci. Math., 121, 1 36, 97 149, 195-259 (1997).
  • 8Beals, R., Greiner, P. C.: Calculus oll Heisenberg manifolds, Ann. Math. Studies #119, Princeton University Press, Princeton, New Jersey, 1988.
  • 9Chang, D. C., Tie, J.: Estimates for spectral projection operators of the sub-Laplacian oll the Heisenberg group. J. Analyse Math., 71, 315-347 (1997).
  • 10Chang, D. C., Tie, J.: Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group. J. Geom. Anal., 10, 653-678 (2000).

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部