期刊文献+

血清SERS光谱分类分析方法比较 被引量:1

Comparison of Classified Analysis Method of Serum SERS Spectroscopy
下载PDF
导出
摘要 随着拉曼光谱技术的迅速发展,对于血清的表面增强拉曼散射(SERS)光谱的研究也成为SERS光谱领域的研究热点,同时在血清SERS光谱的分类分析方法方面也已有了许多研究。本文主要对136例血清样品(35例健康人、58例乳腺病患者及43例肺癌患者)进行拉曼光谱采集,数据经过一定的预处理,最后应用主成分分析法(PCA)和层次聚类分析法(HCA)对采集的136例血清样品的SERS光谱数据进行分类分析及比较。初步可得出:两种分类分析方法对于血清样品的分类都是可行的。 With the rapid development of Raman spectroscopy, the studies of surface enhanced Raman scattering(SERS) spectroscopy of serum have also become the hot topic in the field of SERS spectrum, while there have been a lot of research in terms of classified analysis of serum SERS spectra. In this paper, Raman spectra of 136 serum samples(35 cases of healthy people, 58 cases of breast patients and 43 cases of lung cancer patients) were acquired, and then a certain pretreatment of the data was done. At last, SERS spectra data of 136 cases of serum samples were classified and compared by the methods of principal component analysis and hierarchical clustering analysis. Preliminary Results: these two classification methods for serum samples classifying are possible.
作者 邓悦 王亚平 张毅 Deng Yue;Wang Yaping;Zhang Yi(Department of Medical Physics,Public Basic College,Jinzhou Medical University,Jinzhou,121013;School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian,116024)
出处 《数理医药学杂志》 2020年第5期633-635,共3页 Journal of Mathematical Medicine
基金 国家自然科学基金资助项目(11074029)。
关键词 表面增强拉曼散射光谱 血清 主成分分析 层次聚类分析 SERS spectroscopy serum PCA HCA
  • 引文网络
  • 相关文献

参考文献1

二级参考文献59

  • 1[1]Brown P O,Botstein D.Exploring the new world of the genome with DNA microarrays.Nature Genetics,1999,21(1):33-37
  • 2[2]Jain A K,Murty M N,Flynn P J.Data clustering:a review.ACM Computing Surveys,1999,31(3):264-323
  • 3[3]Schena M,Shalon D,Davis R W,Brown P O.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science,1999,270(5235):467-470
  • 4[4]Schena M,Scalon D,Heller R.Parallel human genome analysis:microarray-based expression monitoring of 1000 genes.Proceedings of the National Academy of Sciences of the United States of America,1996,93(20):10614-10619
  • 5[5]Ramsay G.DNA chips:state-of-the art.Nature Biotechnology,1998,16(1):40-44
  • 6[6]Lockhart D J,Dong H,Byrne M C,Follettie M T,Gallo M V,Chee M S.Expression monitoring by hybridization to high-density oligonucleotide arrays.Nature Biotechnology,1996,14(13):1675-1680
  • 7[7]Lipshutz R J,Fodor S P,Gingeras T R,Lockhart D J.High density synthetic oligonucleotide arrays.Nature Genetics,1999,21(1):20-24
  • 8[8]Harrington C A,Rosenow C,Retief J.Monitoring gene expression using DNA microarrays.Current Opinion in Microbiology,2000,3(3):285-291
  • 9[9]Jiang D X,Pei J,Zhang A D.An interactive approach to mining gene expression data.IEEE Transactions on Knowledge and Data Engineering,2005,17(10):1363-1378
  • 10[10]Kim H,Golub G H,Park H.Missing value estimation for DNA microarray gene expression data:local least squares imputation.Bioinformatics,2005,21(2):187-198

共引文献24

同被引文献1

引证文献1

二级引证文献1

相关主题

;
使用帮助 返回顶部