摘要
针对自动扶梯由于长期处于高员载运行状态而引起主驱动轴轴承故障问题,提出一种基于EEMD-SVM的自动扶梯主驱动轴轴承故障诊断方法。使用集合经验模态分解(EEMD)对轴承异常的振动加速度信号进行分解来提取信号特征,然后基于支持向量机(SVM)构建故障诊断模型对信号进行诊断,从而确定故障状态。
Aiming at the problem of bearing failure of the escalator main drive shaft,a method was proposed for fault diagnosis of the bearing of the escalator main drive shaft based on EEMD-SVM.The Ensemble Empirical Mode Decomposition(EEMD)was used to decompose the abnormal vibration acceleration signal of the bearing to extract the signal characteristics,and then a fault diagnosis model was constructed based on the Support Vector Machine(SVM)to diagnose the signal to determine the fault status.
作者
孟庆宇
MENG Qingyu(China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063, China)
出处
《机械与电子》
2020年第5期51-53,58,共4页
Machinery & Electronics