期刊文献+

对比Harris算子和Susan算子的建筑物边界规则化方法 被引量:12

A building boundary regularization method by contrasting Harris operator and Susan operator
下载PDF
导出
摘要 建筑物顶部边界的精确提取在建立数字城市等方面发挥着非常重要的作用。本文针对从遥感影像中粗提取的建筑物边界不规则的问题,结合Harris算子和Susan算子,提出了一种对粗提取后的建筑物边界进行规则化拟合的处理方法。首先对粗提取的建筑物顶部边界进行预处理以剔除噪声影响;然后分别使用Harris算法和Susan算法对预处理后的建筑物边界进行角点检测提取;最后对检测提取的边界角点进行点号排序和规则化拟合连接得到规则的建筑物边界。试验结果表明,通过该方法处理后的建筑物边界平滑且与其实际边界基本一致。 The precise extraction of the top boundary of a building plays a very important role in establishing a digital city and so on. In order to solve the problem of irregular boundary of buildings extracted from remote sensing images,combined with Harris operator and Susan operator,a method for regular fitting of rough extracted building boundaries is proposed. Firstly,pre-process the rough-extracted top boundary of the building to eliminate noise effects. Then the Harris algorithm and Susan algorithm are used to detect the corners of the pre-processed building boundary respectively. Finally,the corner points of the extracted boundary corner points are sorted and regular fitting is connected to obtain the regular building boundary. The experimental results show that the boundary of the building treated by this method is smooth and basically consistent with the actual boundary of the building.
作者 王杰茜 冯德俊 陈建飞 WANG Jiexi;FENG Dejun;CHEN Jianfei(Faculty of Geosciences and Environmental Engineering,South West Jiaotong University,Chengdu 611756,China)
出处 《测绘通报》 CSCD 北大核心 2020年第4期11-15,共5页 Bulletin of Surveying and Mapping
基金 国家重点研发计划(2016YFC0803105)。
关键词 建筑物边界 规则化 角点检测 HARRIS算子 SUSAN算子 building boundary regularization corner detection Harris operator Susan operator
  • 相关文献

参考文献6

二级参考文献31

  • 1赖旭东,万幼川.机载激光雷达距离图像的边缘检测研究[J].激光与红外,2005,35(6):444-446. 被引量:20
  • 2Wang Mao-jun, Wu Wen-yen, Huang Liang-kai ,et al. Corner detection using bending value[ J]. Pattern Recognition Letters, 1995,16 ( 6 ) : 575-583.
  • 3Mokhtarian F, Suomela R. Robust image comer detection through curvature scale space [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 12 ) : 1376-1381.
  • 4Singh A, Shneier M. Grey level comer detection: A generalization and a robust real time implementation [ J ]. Computer Vision, Graphics and Image Processing, 1990,51 ( 1 ) :54-69.
  • 5Shen Fei, Wang Han. Real time gray level corner detector [ C ]//Proceedings of the 6th International Conference on Control, Automation, Robotics and Vision. Singapore, 2000: 1-6.
  • 6Harris C, Stephens M J. A combined comer and edge detector[ C]//Proceedings Fourth Alvey Vision Conference. Manchester, U. K, 1988.
  • 7Smith M, Brady J M. SUSAN-A new approach to low level image processing[ J]. International Journal of Computer Vision, 1997 ( 1 ) :45-78.
  • 8Rosten E, Drummond T. Fusing points and lines for high performance tracking[ J ]. IEEE International Conference on Computer Vision, 2005,2 (10) : 1508-1511.
  • 9Rosten E, Drummond T. Machine learning for high-speed comer detection[ J ]. European Conference on Computer Vision ,2006,1 (5) :430-443.
  • 10崔屹.图像处理与分析:数学形态学方法与应用[M].北京:科学出版社,2000.

共引文献48

同被引文献132

引证文献12

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部