期刊文献+

基于数据驱动的过程监测系统设计方法研究 被引量:5

Data-driven Design of Process Monitoring Systems
下载PDF
导出
摘要 为保障工业系统高效安全地运行,主要研究对于一般工业系统基于数据驱动的过程监测系统设计方法。首先,借助互质分解技术学习故障诊断观测器的参数化形式,在已有数据驱动设计方法的基础上,将单维的基于观测器的残差产生器扩展至多维,研究基于多维残差产生器的过程监测系统设计。其次,针对工业系统中普遍存在的非线性、系统不确定性和工作点变化等问题,基于自适应观测技术还为多维残差产生器设计了自适应更新策略。最后通过在三水箱仿真系统中的案例学习验证了所提出的数据驱动设计方法。 To ensure the safe and efficient operation of modern industrial systems,this paper focuses on the data-driven design of process monitoring systems.First,based on the coprime factorization technique the parameterization forms of fault diagnosis observers are studied.Motivated by the study on existing data-driven design techniques,a multi-dimensional data-driven observer-based residual generator has been proposed.And then,in order to tackle the common existing nonlinearity,uncertainty and the operating point change of the industrial system,an adaptive method is proposed for the multi-dimensional data-driven residual generator.At last,the effectiveness of the proposed design schemes are demonstrated using a three-tank benchmark system.
作者 宋雪 罗浩 尹珅 丁先春 SONG Xue;LUO Hao;YIN Shen;DING Xian-chun(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China;Institute for Automatic Control and Complex System,University of Duisberg-Essen,Duisburg 47057,Germany)
出处 《控制工程》 CSCD 北大核心 2020年第4期587-592,共6页 Control Engineering of China
基金 中国博士后科学基金项目(2017M611368)。
关键词 数据驱动 过程监测 多维残差产生器 自适应观测器 Data-driven process monitoring residual generator adaptive observer
  • 相关文献

参考文献1

二级参考文献117

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 6Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 7Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 8Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 9Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 10Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074

共引文献306

同被引文献56

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部