摘要
M是一个n维紧黎曼流形,具有严格凸边界,且Ricci曲率不小于(n-1)K(其中K≥0为某个常数).假定Schrodinger算子的Dirichlet (或Robin)特征值问题的第一特征函数f1在M上是对数凹的,该文得到了此类Schrodinger算子的前两个Dirichlet(或Robin)特征值之差的下界估计,这推广了最近Andrews等人在R^n中有界凸区域上关于Laplace算子的一个相应结果[4].
Let M be an n-dimensional compact Riemannian manifold with strictly convex boundary.Suppose that the Ricci curvature of M is bounded below by(n-1)K for some constant K≥0 and the first eigenfunction f1 of Dirichlet(or Robin)eigenvalue problem of a Schrodinger operator on M is log-concave.Then we obtain a lower bound estimate of the gap between the first two Dirichlet(or Robin)eigenvalues of such Schrodinger operator.This generalizes a recent result by Andrews et al.([4])for Laplace operator on a bounded convex domain in R^n.
作者
何跃
赫海龙
He Yue;Her Hailong(Institute of Mathematics,School of Mathematics Sciences,Nanjing Normal University,Nanjing 210023;Department of Mathematics,Jinan University,Guangzhou 510632)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2020年第2期257-270,共14页
Acta Mathematica Scientia
基金
国家自然科学基金(11671209,11871278)
江苏高校优势学科建设工程资助项目。