摘要
随着数据科学的迅速发展,智能算法应运而生。一些学者将这些智能方法应用到多属性评价中,成功克服了传统综合评价方法的一些不足,取得了较好的应用效果。本文介绍了粗糙集的基本概念,分析了粗糙集在多属性评价中应用的原理,将基于粗糙集的多属性评价方法分为了三类,并按照所分类型详细介绍了一些最新的研究成果。最后,针对粗糙集在多属性评价应用中存在的不足之处,提出了相应的解决方法,并对未来的研究方向进行了展望,为进一步深入研究此类问题提供了借鉴。
With the rapid development of data science,intelligent algorithms have emerged.These intelligent methods were applied to multi-attribute evaluation by some scholars,successfully overcoming some of the shortcomings of traditional comprehensive evaluation methods,and having?a good?performance.Firstly,the basic concepts of rough sets are introduced and the?fundamentals of rough sets in multi-attribute evaluation are analyzed.Secondly,the methods based on rough sets in multi-attribute evaluation are divided into three categories,and some latest research results are introduced in detail.Finally,some solutions are proposed to overcome the shortcomings of rough sets in multi-attribute evaluation application,and the future research directions are prospected,which provides a reference for further research.
作者
邬阳阳
任艳
韩硕
孙岩松
WU Yang-yang;GUO Wen-qiang;REN Yan;HAN Shuo;SUN Yan-song(School of Computer Science and Engineering,Xinjiang University of Finance and Economics,Urumqi 830012,Xinjiang)
出处
《湖南工业职业技术学院学报》
2020年第1期9-13,34,共6页
Journal of Hunan Industry Polytechnic
基金
新疆财经大学研究生科研创新项目“基于深度学习的属性级情感极性分析研究”(项目编号:XJUFE2019K050)。
关键词
粗糙集
多属性评价
权重
属性约简
rough sets
multi-attribute evaluation
weight
attribute reduction