摘要
现阶段深度学习作为一种实现机器学习的技术,在分析模型问题和评估模型的方法上基本一致。文章从评估模型的角度,以混淆矩阵为基础,通过常用的Accuracy,Precision以及Recall等衡量模型的预测能力。研究结合深度学习近几年的竞赛任务分析样本均衡与非均衡下几种评估模型方法的差异,从几种评估指标之间的联系讨论P-R曲线评估模型之间的相关性,以及P-R曲线在目标检测任务中作为评估模型方法的合理性。
At present,deep learning,as a technology to realize machine learning,is basically consistent in analyzing model problems and evaluating model methods.From the perspective of the evaluation model,based on the confusion matrix,this paper measures the prediction ability of the model from the commonly used Accuracy,Precision and Recall.This paper analyzes the differences of several evaluation models under the condition of sample equilibrium and non-equilibrium,discusses the correlation between the evaluation models of P-R curve from the relationship between several evaluation indexes,and discusses the rationality of P-R curve as the evaluation model method in the target detection task.
作者
张超
ZHANG Chao(Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处
《现代信息科技》
2020年第4期23-24,27,共3页
Modern Information Technology