期刊文献+

基于注意力机制的深度学习态势信息推荐模型 被引量:4

Attention-Based Deep Learning Situation Information Recommendation Model
下载PDF
导出
摘要 随着信息技术的迅猛发展,战场态势数据呈现出体量大、类型多、增长快、价值密度低等“4v”特点,能够增强态势感知的同时,大量冗余数据也会严重干扰指挥员对有用信息的提取和有效利用,影响指挥员快速、准确地决策。针对态势信息给指挥员带来的信息过载问题,提出一种基于注意力机制的深度学习态势信息推荐模型,引入双层注意力机制,利用多层神经网络分别学习项目级和组件级的注意力权重,深究指挥员与态势信息之间的潜在关系,构建指挥员偏好预测模型,提高推荐的准确性。 With the rapid development of IT,battlefield situation data presents the characteristics of"4v":volume,variety,velocity and value.While it can enhance situational awareness,a large number of redundant data will seriously interfere with the commander’s extraction and effective use of useful information,and affect the commander’s rapid and accurate decision-making.To address the problem of information overload,we propose a model of deep learning situation information recommendation based on attention mechanism,which introduces a double-layer attention mechanism to assign item and components attentive weights respectively.We explore the latent relationship between commanders and situation information by using multi-layer neural network to build the commander preference prediction model and improve the accuracy of recommendation.
作者 周春华 郭晓峰 沈建京 李艳 周振宇 ZHOU Chunhua;GUO Xiaofeng;SHEN Jianjing;LI Yan;ZHOU Zhenyu(Information Engineering University, Zhengzhou 450001, China)
机构地区 信息工程大学
出处 《信息工程大学学报》 2019年第5期597-603,共7页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61773399)。
关键词 注意力机制 深度学习 推荐系统 态势信息推荐 attention mechanism deep learning recommendation system situation information recommendation
  • 相关文献

参考文献7

二级参考文献153

  • 1袁进徐,赵建峰,董振平,周良伟.灰靶理论的空中目标威胁评估与排序[J].火力与指挥控制,2007,32(4):56-58. 被引量:10
  • 2MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 3MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 510 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 6Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 7Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 8Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 9Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 10LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.

共引文献1356

同被引文献64

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部