摘要
研究了一类具有非线性扩散和Holling Ⅲ类功能性反应且同时具有连续时滞和离散时滞的非自治捕食竞争系统.运用比较定理,得到系统一致持久生存的充分条件.利用Liapunov稳定性理论,得到相应周期系统正周期解存在唯一及全局渐近稳定的充分条件.最后,通过数值模拟来验证结论的正确性.
A class of nonautonomous predator-prey competition systems with nonlinear diffusion and Holling Ⅲ functional reactions with continuous and discrete delays are studied in this paper.By using the comparison theorem,the sufficient conditions for the uniformly persistent existence of the system are obtained.With Liapunov stability theory,sufficient conditions for the existence,uniqueness and global asymptotic stability of positive periodic solutions for corresponding periodic systems are obtained.Numerical simulation illustrates the feasible of the main result.
作者
梁桂珍
赵晓
Liang Guizhen;Zhao Xiao(Department of Mathematics and Information Science,Xinxiang Univesity,Xinxiang 453003,China;Department of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450000,China)
出处
《河南师范大学学报(自然科学版)》
CAS
北大核心
2020年第3期19-25,共7页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金(11871238)
河南省高等学校重点科研项目(20B110014)
新乡学院科技创新项目(12ZB17).