期刊文献+

基于改进遗传算法的生鲜多目标闭环物流网络模型 被引量:8

Multi-objective closed-loop logistics network model of fresh foods based on improved genetic algorithm
下载PDF
导出
摘要 针对生鲜产品闭环物流网络中存在的经济成本高、碳排放量大、社会效益重视不足等问题,综合考虑退货量的不确定性,以经济成本最小、碳排放最小、社会效益最大为目标,建立了不确定条件下的生鲜多目标闭环物流网络模型。首先,利用改进的遗传算法(GA)求解该模型;然后,结合上海某生鲜企业运营管理数据,验证了模型的可行性;最后,将改进的GA的结果与粒子群优化(PSO)算法的结果对比,验证了算法的有效性,凸显了改进的GA在求解多目标的复杂约束问题时的优越性。算例结果表明,多目标优化满意度达到0.92,高于单目标优化满意度,展示了所提模型的有效性。 In order to solve the problems of high economic costs,large amount of carbon emissions and insufficient attention to social benefits in the closed-loop logistics network for fresh foods,a multi-objective closed-loop logistics network model for fresh foods under uncertain conditions was established by considering the uncertainty of return quantity and aiming at the minimum economic costs,the minimum carbon emissions and the maximum social benefits.Firstly,the improved Genetic Algorithm(GA)was used to solve the model.Then,the feasibility of the model was verified by combining the operation and management data of a fresh food enterprise in Shanghai.Finally,the results of improved GA was compared to the results of Particle Swarm Optimization(PSO)algorithm to verify the effectiveness of the algorithm,and to highlight the superiority of the improved GA in solving multi-objective complex constraint problems.The example results show that the satisfaction degree of multi-objective optimization is 0.92,which is higher than that of single-objective optimization,demonstrating the effectiveness of the proposed model.
作者 霍晴晴 郭健全 HUO Qingqing;GUO Jianquan(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai-Hamburg College,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《计算机应用》 CSCD 北大核心 2020年第5期1494-1500,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(71471110) 上海市科技创新行动计划项目(16DZ1201402) 上海市科委院校能力建设项目(16040501500)。
关键词 生鲜闭环物流网络 不确定条件 多目标模型 遗传算法 粒子群优化算法 fresh food closed-loop logistics network uncertain condition multi-objective model Genetic Algorithm(GA) Particle Swarm Optimization(PSO)algorithm
  • 相关文献

参考文献21

二级参考文献180

共引文献259

同被引文献48

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部