期刊文献+

含氟电解液对TiO_(2)纳米管阵列生长的影响

Effect of Fluoride-containing Electrolyte on the Growth of TiO_(2) Nanotube Arrays
下载PDF
导出
摘要 以含NH4F的乙二醇溶液作为电解液,通过重复使用电解液的方式,对金属Ti箔进行阳极氧化处理,在其表面制得形貌可控的TiO2纳米管阵列结构;利用扫描电子显微镜(SEM)对TiO2纳米管阵列的形貌进行表征,并对TiO2纳米管阵列的形成机理进行分析。结果表明:所获得的TiO2纳米管呈现圆锥状,H+和F–离子是形成TiO2纳米管阵列的关键;重复使用含氟电解液,可将可溶性氟化物完全转化成TiF62–离子,从而减少对环境的危害,含氟电解液可重复使用6次;随着含氟电解液使用次数的增加,TiO2纳米管的尺寸能够被有效调控;TiO2纳米管阵列的管长呈现先增大后减小的趋势,可在20μm内自由调控,纳米管管口处直径最高可达110 nm左右。 TiO2 nanotube arrays were fabricated on the Ti substrate in an ethylene glycol solution of NH4F via anodic oxidation method.The morphology of TiO2 nanotube arrays was characterized by scanning electron microscope(SEM).At the same time,the growth mechanism of TiO2 nanotube arrays was analyzed.The results show that the TiO2 nanotube displays a cone-shaped structure with one end closed.H+and F–ions are key to the formation of TiO2 nanotube arrays.By reusing the fluoride-containing electrolyte,the F–ions can be completely converted into TiF62–ions,so as to reduce the harm to the environment.The fluoride-containing electrolyte can be used for 6 times continuously.The characteristic sizes of TiO2 nanotubes can be effectively controlled with the usage count of electrolyte.The length of TiO2 nanotubes increases first and then decreases,which can be adjusted freely within 20μm,and the diameter of the nanotubes can reach up to about 110 nm.
作者 蔡芳共 廖磊 张勤勇 CAI Fanggong;LIAO Lei;ZHANG Qinyong(School of Materials Science and Engineering,Xihua University,Chengdu 610039 China)
出处 《西华大学学报(自然科学版)》 CAS 2020年第3期42-47,共6页 Journal of Xihua University:Natural Science Edition
基金 特种材料及制备技术四川省高校重点实验室开放课题(szjj2017-061) 西华大学校重点基金(Z17103) 四川省教育厅项目(182498) 三亚市专项科研试制项目(2014KS12)。
关键词 TiO_(2)纳米管阵列 阳极氧化 含氟电解液 生长机理 场致溶解理论 TiO_(2) nanotube arrays anodic oxidation fluoride-containing electrolyte growth mechanism field-assisted dissolution theory
  • 相关文献

参考文献2

二级参考文献24

  • 1Paulose M,Shankar K,Yoriya S,et al.J.Phys.Chem.B,2006,110(33):16179-16184.
  • 2Albu S P,Ghicov A,Macak J M,et al.Phys.Stat.Sol.,2007,1(2):R65-R67.
  • 3Prakasam H E,Shankar K,Paulose M,et al.J.Phys.Chem.C,2007,111:7235-7241.
  • 4Paulose M,Prakasam H E,Varghese O K,et al.J.Phys.Chem.C,2007,111:14992-14997.
  • 5LAIYue-Kun(赖跃坤) SUNLan(孙岚) ZUOJuan(左娟) etal.Wuli Huaxue Xuebao,2004,20(9):1063-1066.
  • 6NING Cheng-Yun(宁成云) WANG Yu-Qiang(王玉强) ZHENG Hua-De(郑华德) et al.Huaxue Yanjiu Yu Yingyong,2010,22(1):14-17.
  • 7LIANGJian-He(梁建鹤) XIAOXiu-Feng(肖秀峰) LIURong-Fang(刘榕芳) etal.Wuji Huaxue Xuebao,2010,26(1):112-119.
  • 8Mor G K,Varghese O K,Paulose M,et al.J.Mater.Res.,2003,18(11):2588-2593.
  • 9Jae H L,Jinsub C.Small,2007,3(9):1504-1507.
  • 10Iijima S.Nature,1991,354:56-58.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部