摘要
针对目前图像基本颜色特征单一、可提取信息不足的问题,提出将图像进行HSV颜色空间转换,先用均衡化直方图增强空间颜色互转后的图像空间颜色像素,再用融入rgb2ind的K-means均值聚类算法提亮均衡图像,以增强图像颜色特征的提取目标和数量.实验结果表明,该方法优于普通空间颜色图像进行特征提取的效果,实现了为颜色特征识别提供更多的检索信息.
Aiming at the current problem of single basic color features of image and insufficient information available, we proposed to transform the image into HSV color space. We first used the equalization histogram to enhance the spatial color pixels of the image after the spatial color conversion, and then used K-means clustering algorithm integrated with rgb2 ind to brighten the balanced image, so as to enhance the extraction target and quantity of image color feature. The experimental results show that the proposed method is better than that of the ordinary spatial color image for feature extraction, and provides more retrieval information for color feature recognition.
作者
李健
姜楠
宝音巴特
张帆
张伟健
王薇
LI Jian;JIANG Nan;BAOYIN Bate;ZHANG Fan;ZHANG Weijian;WANG Wei(College of Information Technology,Jilin Agricultural University,Changchun 130118,China;Jilin Science and Technology Works Service Center,Changchun 130021,China;College of Graduate School,Jinlin Agricultural University,Changchun 130118,China;College of Horticulture,Jilin Agricultural University,Changchun 130118,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2020年第3期627-633,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:41601454,41671397)
吉林省环境保护科研项目(批准号:吉环科字第2019-02)
吉林省科技发展计划项目(批准号:20191001008XH)
吉林省教育厅“十三五”科学技术研究项目(批准号:JJKH20190922KJ)
吉林省林业厅科技推广示范项目(批准号:JLT2019-17)
吉林省科技攻关项目(批准号:20190304008YY).
关键词
HSV颜色空间
均值聚类
特征提取
识别
检索
HSV color space
mean clustering
feature extraction
recognition
retrieval