期刊文献+

隐式低秩稀疏表示的多视角子空间聚类 被引量:4

Latent Low-Rank Sparse Multi-view Subspace Clustering
下载PDF
导出
摘要 针对多视角子空间聚类问题,提出基于隐式低秩稀疏表示的多视角子空间聚类算法(LLSMSC).算法构建多个视角共享的隐式结构,挖掘多视角之间的互补性信息.通过对隐式子空间的表示施加低秩约束和稀疏约束,捕获数据的局部结构和稀疏结构,使聚类结果更准确.同时,使用基于增广拉格朗日乘子交替方向最小化算法高效求解优化问题.在6个不同数据集上的实验验证LLSMSC的有效性和优越性. To solve the problem of multi-view clustering,a latent low-rank sparse multi-view subspace clustering(LLSMSC)algorithm is proposed.A latent space shared by all views is constructed to explore the complementary information of multi-view data.The global and local structure of multi-view data can be captured to attain promising clustering results by imposing low-rank constraint and sparse constraint on the implicit latent subspace representation simultaneously.An algorithm based on augmented Lagrangian multiplier with alternating direction minimization strategy is employed to solve the optimization problem.Experiments on six benchmark datasets verify the effectiveness and superiority of LLSMSC.
作者 张茁涵 曹容玮 李晨 程士卿 ZHANG Zhuohan;CAO Rongwei;LI Chen;CHENG Shiqing(College of Software Engineering,Xi′an Jiaotong University,Xi′an,710049)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2020年第4期344-352,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61573273) 轨道交通工程信息化国家重点实验室(中铁一院)开放课题(No.SKLK19-01)资助。
关键词 子空间聚类 低秩约束 稀疏约束 隐式表示 Subspace Clustering Low-Rank Constraint Sparse Constraint Latent Representation
  • 相关文献

参考文献2

二级参考文献115

  • 1Lee J S, Kuo Y M,Chung P C, et al. Naked image detectionbased on adaptive and extensible skin color mode [J]. PatternRecognition, 2007. 40(8) : 2261 - 2270.
  • 2Archibald R. Polynomial fitting for edge detection in irregularlysampled signals and images [J]. SIAM Journal on NumericalAnalysis. 2005,43(1):259 -279.
  • 3Chan T F, Vese L A. Active contours without edges [J]. IEEETrans, on Image Processing . 2001,10(2): 266 - 277.
  • 4Han Y. Feng X C,Baciu G. Variational and PCA based natural images^mentation [J], Pattern Recognition f 2013, 46(1) .1971 - 1984.
  • 5Han Y, Wang W W, Feng X C. A new fast multiphase imagesegmentation algorithm based on nonconvex regularizer [J].Pattern Recognition . 2012, 45(1) j 363 - 372.
  • 6Xiang T, Gong S. Spectral clustering with eigen vector selec-tion [J]. Pattern Recognition . 2008,41(3) : 1012 - 10^9.
  • 7Thilagamani S. A survey on image segmentation through clus-tering [J]. International Journal of Research and Reviews inInformation Sciences , 2011,1(1) : 14 - 17.
  • 8Elhamifar E, Vidal R. Sparse subspace clustering [C]//Proc.of the IEEE Con ference on Computer Vision and Pattern Rec-ognition ,2009:2790 - 2797.
  • 9Elhamifar E, Vidal R. Clustering disjoint subspaces via sparserepresentation [C] [/ Proc. of the IEEE International Conferenceon Acoustics. Speecht and Signal Processing > 2011:1926 - 1929.
  • 10Liu G, Lin Z, Yu Y. Robust subspace segmentation by low-rank representation [C] // Proc. of the International Confer-ence on Machine Learning . 2010:663 - 670.

共引文献88

同被引文献12

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部