期刊文献+

传感网中基于压缩感知的丢包匹配数据收集算法 被引量:10

CS-MDGA:A Packet Loss Matching Data Gathering Algorithm in Sensor Networks Based on Compressive Sensing
下载PDF
导出
摘要 为了提高传感网中数据重构精度以及降低不可靠链路丢包对压缩感知(Compressive Sensing,CS)数据收集的影响,本文提出了一种基于压缩感知丢包匹配数据收集算法(Packet Loss Matching Data Gathering Algorithm Based on Compressive Sensing,CS-MDGA).本文算法通过压缩感知技术构建了全网数据间的“关联效应”,并设计了基于丢包匹配的稀疏观测矩阵(Sparse Observation Matrix Based on Packet Loss Matching,SPLM),证明了该观测矩阵概率趋近于“1”时,满足的等距约束条件(Restricted Isometry Property,RIP),完成了节点间多路径路由数据的可靠交付.仿真实验结果表明,本文算法在链路丢包率为60%情况下,相对重构误差仍小于5%,验证了本文算法不仅具有较高的重构精度,而且还可以有效缓解不可靠链路丢包对CS数据收集的影响. In order to improve the data reconstruction accuracy and alleviate the influence of packet loss over unreliable links on the Compressive Sensing(CS)data gathering in sensor networks,we propose a Packet Loss Matching Data Gathering Algorithm Based on Compressive Sensing(CS-MDGA)in this paper.This proposed algorithm establishes the correlation effect of the network data with the CS technique.We further design the Sparse Observation Matrix based on Packet Loss Matching(SPLM)in this paper.In addition,we prove that the designed observation matrix satisfies the Restricted Isometry Property(RIP)with a probability arbitrarily close to 1,which can guarantee the reliable delivery of the multi-path routing data among different nodes.The simulation results show that the relative reconstruction error of this proposed algorithm is still lower than 5%even when the packet loss rate of the link is as high as 60%.Therefore,it is verified that this proposed algorithm not only exhibits high reconstruction accuracy,but also effectively alleviates the influence of packet losses over unreliable links on the CS-based data collection.
作者 孙泽宇 李传锋 阎奔 SUN Ze-yu;LI Chuan-feng;YAN Ben(School of Computer Science and Engineering,Luoyang Institute of Science and Technology,Luoyang,Henan 471023,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2020年第4期723-733,共11页 Acta Electronica Sinica
基金 国家自然科学基金(No.U1604149) 河南省教育厅高等学校青年骨干教师培养计划(No.2016GGJS-158) 河南省教育厅重点项目资助计划(No.19A520006) 河南省科技厅科技攻关计划(No.182102210428) 洛阳理工学院高层人才资助计划(No.2017BZ07)。
关键词 传感网 压缩感知 数据收集 关联效应 稀疏观测矩阵 sensor networks compressive sensing data gathering correlation effect sparse observation matrix
  • 相关文献

参考文献7

二级参考文献54

  • 1唐勇,周明天,张欣.无线传感器网络路由协议研究进展[J].软件学报,2006,17(3):410-421. 被引量:201
  • 2江贺,刘文杰,张宪超.无线传感器网络路由协议研究进展[J].小型微型计算机系统,2007,28(4):594-599. 被引量:22
  • 3石高涛,廖明宏.传感器网络中具有负载平衡的移动协助数据收集模式[J].软件学报,2007,18(9):2235-2244. 被引量:35
  • 4Wendi R H, Anantha C, Hari B. Energy-efficient communica- tion protocol for wireless microsensor networks [ A ]. Prcr_,eed- ings of the 33rd Hawaii International Conference on System Sciences[ C]. The Island of Maui :IEEE CS,2000.1 - 10.
  • 5Lindsey S, Raghavendm C S. PEGASIS: Power-efficient gather- ing in sensor information systems [A]. gs of the IEEF Aerospace Conference [C ]. Big Sky, MT, United States: IEEE CS,2000.1 -6.
  • 6A Manjeshwar, D P Agrawal. TEEN: A routing protocol for en- hanced efficiency in wireless sensor networks[ A ]. Proceedings of the 15th International Parallel and Distributed Processing Symposium[ C] .San Francisco: IF.EF. CS, 2001.2009- 2015.
  • 7Xing Guoliang, Wang Tian, Jia Weijia, Li Minming. Ren- dezvous design algorithms for wireless sensor networks with a mobile base station[ A] .Proceedings of the International Sym- posium on Mobile Ad Hoc Networking and Computing(Mobi- Hoc) [ C]. Hong Kong: ACM SIGMobile. 2008.231 - 239.
  • 8M 22aao, Y Yang.Bounded relay hop mobile data gathering in wireless sensor networks[ J]. IEEE Transactions on Computers, 2012,61(2) :265 - 277.
  • 9Tseng, Yu Chee, Lai Wan Ting, Huang Chi Fu, Wu Fang Jing. Using mobile mules for collecting data from an isolated wireless sensor network[ A] .39th International Conference on Parallel Processing, ICPP [C]. San Diego, CA, United States: 1ACC, 2010.673 - 679.
  • 10Guo Longjiang, R aheemBeyah, Li Yingshu. SMITE: A stochastic compressive data collection protocol for mobile wireless sensor networks [A]. IEF.F. 30th Conference on Computer Communications(INF-OCDM)[ C ]. Shanghai, Chi- na :IEEE,2010.16ll - 1619.

共引文献85

同被引文献73

引证文献10

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部