摘要
基于Faster R-CNN模型提出复杂背景下粮仓害虫的检测识别方法。将六种常见的储粮害虫(豆象、谷蠹、米象、锯谷盗、赤拟谷盗、锈赤扁谷盗)分别以大米、小米为背景,建立了真实背景下粮仓害虫图像数据集SGI-6。SGI-6中包括网络获取图像、显微镜采集图像和单反拍摄图像三种多目标尺度的数据集。根据粮仓害虫的小目标特性,使用聚类算法改进Faster R-CNN模型的区域提案网络,来提取这些图像中含有害虫的区域,并对这些区域中的害虫进行分类。实验结果表明,该方法能够在储粮条件下检测和识别粮仓害虫,且其平均准确率(mAP)达到96.63%。
Based on the Faster R-CNN model,we proposed a method for detecting and identifying granary insects under complex background.Six common stored grain insects(bean weevils,rhizopertha,sitophilus oryzae,oryzaephilus surinamensis,tribolium castaneum,cryptolestes ferrugineus)were established with a granary insect image dataset SGI-6 under a real context,respectively,with rice and millet as the background.There were three datasets with multi-target scale in SGI-6,i.e.network acquisition images,microscope acquisition images,and SLR images.According to the small target characteristics of granary insects,the clustering algorithm was used to improve the regional proposal network of the Faster R-CNN model to extract the pest-containing areas of these images and classify the insects in these areas.The experimental results showed that the method could be used to detect and identify granary insects under the condition of stored grain,and its average accuracy(mAP)reached 95.63%.
作者
张诗雨
夏凯
杜晓晨
冯海林
陈力
Zhang Shiyu;Xia Kai;Du Xiaochen;Feng Hailin;Chen Li(College of Information Engineering,Zhejiang Agricultural and Forestry University,Hangzhou 311300;Zhejiang Forestry intelligent monitoring and information technology research key laboratory,Hangzhou 311300;Forestry sensing technology and intelligent equipment Key Laboratory of State Forestry Administration,Hangzhou 311300)
出处
《中国粮油学报》
EI
CAS
CSCD
北大核心
2020年第4期165-172,共8页
Journal of the Chinese Cereals and Oils Association
基金
国家重点研发计划(2018YFD0401403)
浙江省重点研发计划(2018C02050)
杭州市农业与社会发展科研主动设计项目(20190101A07)
浙江省自然科学基金委员会-青山湖科技城管委会联合基金(LQY18C160002)
浙江省大学生科技创新活动计划(新苗人才计划)(2018R412046)。