摘要
分析区域日度交通事故规模的影响因素,是做好区域日度交通事故短时预测与防控的基础。搜集北京某区域2012-2015年道路交通事故、气象和日期性质等数据,采用负二项回归技术,建立了区域交通事故预测模型;以2012-2014年的数据作为训练集,以2015年的数据为测试集,拟合模型伪R2为0.645,预测期内绝对百分误差的中位数为17.04%,模型预测效果较好,达到了精度要求。模型还表明:①节假日期间事故减少,节假日前1 d事故增加,节假日后1 d天事故平稳;②1周内,周一和周日事故规模相对较小;③1年内,2月、3月事故规模稍小,7月、9月、10月、11月、12月事故规模稍高;④尾号限行对事故规模影响大,但针对尾号为4和9的限行几乎没有影响;⑤相较于晴天,多数非晴朗天气情况下事故规模反而下降;⑥日平均气温提高会小幅降低事故规模,但日最高气温和最低气温之差增大会增加事故规模。
An analysis of the factors affecting regional daily traffic accidents is the basis for accurate short-term accident prediction and prevention. A model to predict regional traffic accidents is developed by using negative binomial regression technique. Data is collected on road traffic accidents,weather conditions,and date characteristics of a district in Beijing from 2012 to 2015. The data from 2012 to 2014 is used as a training set,and the data from 2015 as a test set,the pseudo-R2 of the fitted model is 0.645,and the median absolute percentage error during the forecast period is 17.04%. The model has good performances and meets the accuracy requirement. The results show that: ①accidents decrease during holidays,increases on 1 day before holidays,and no significant change on 1 day after holidays;②accidents are relatively fewer on Mondays and Sundays during a week;③ accidents are relatively fewer in February and March,and slightly more in July,September,October,November,and December during a year;④traffic restrictions based on the last number on license plate has large impacts on accidents,but it has little effects when the number is 4 and 9;⑤accidents actually decrease in most non-sunny weather conditions compared to sunny days;⑥an increase in the average daily temperature will slightly reduce accidents,but an increase in the difference between the daily maximum and minimum temperatures will increase accidents.
作者
何庆
马社强
李洋
HE Qing;MA Sheqiang;LI Yang(Department of Road Traffic Management,Beijing Police College,Bering 102202,China;School of Security and Traffic Management,People,s Public Security University of China,Beijing 100038,China)
出处
《交通信息与安全》
CSCD
北大核心
2020年第1期61-66,83,共7页
Journal of Transport Information and Safety
基金
北京市公安局课题项目(SJ201801)
首都社会安全研究基地项目(CCSS2019WT02)资助。
关键词
交通安全
事故数预测模型
负二项回归
气象条件
日期性质
traffic safety
prediction model of accident number
negative binomial model
meteorological condition
date characteristics