期刊文献+

异结构超混沌系统的自适应函数投影同步 被引量:2

Adaptive Function Projective Synchronization of Different Hyper Chaotic Systems
下载PDF
导出
摘要 针对异结构分数阶和整数阶超混沌系统的函数投影同步(FPS)及其响应系统参数识别问题,利用Laplace变换将分数阶微分变换到Laplace域中,然后再利用整数阶微分来逼近分数阶微分,把异结构(分数阶和整数阶)混沌系统的同步问题转化为同结构(整数阶)系统的同步。利用缩减驱动系统维数以达到驱动、响应系统维数一致。根据Lyapunov稳定性理论,设计了非线性控制输入机制和参数更新规则。MATLAB数值仿真结果验证了所设计的控制器和参数更新规则的有效性。所提的内容为整数阶和分数阶的有关同步提供了一种新的思考方法。 For the problem of the function projective synchronization between fractional-order and integer-order hyperchaotic systems and parameter identification of the response system, the Laplace transform is used to transform the fractional-order differential into the Laplace domain. By using the integral order differential to approximate the fractional order operators, the problem of synchronization of different chaotic systems(fractional order and integer order) is transformed into the problem of the synchronization of same structure integer-order chaotic systems. The dimension of drive system is reduced to achieve the same dimensions of drive and response systems. According to the Lyapunov stability theory, the nonlinear control input mechanism and parameter updating rules are designed. The validity of the designed controller and parameter updating rules is verified through numerical simulation of MATLAB.This paper provides a new train of thought for the synchronization of integer order and fractional order chaotic systems.
作者 张晓青 ZHANG Xiao-qing(Science Department,Taiyuan Institute of Technology,Taiyuan Shanxi,030008)
出处 《山西大同大学学报(自然科学版)》 2020年第2期39-42,共4页 Journal of Shanxi Datong University(Natural Science Edition)
基金 太原工业学院科学基金项目[2018LG05]。
关键词 混沌系统 函数投影同步 参数识别 LAPLACE变换 chaotic system function projective synchronization parameter identification Laplace transform
  • 相关文献

参考文献4

二级参考文献26

  • 1王发强,刘崇新.Liu混沌系统的混沌分析及电路实验的研究[J].物理学报,2006,55(10):5061-5069. 被引量:38
  • 2Pecora L M, Carroll T L. Synchronization in cha- otic systems [J]. Phys Rev Lett, 1990, 64: 821- 826.
  • 3Mahmoud G M, Bountis T, Ahdel-Latif G M. Mahmoud, E E. Chaos synchronization of two dif- ferent chaotic complex Chen and Lti systems [J]. Nonlinear. Dyn. 2009, 55: 43-53.
  • 4Li C D, Chen Q, Huan T W. Coexistence of anti- phase and complete synchronization in coupled chen system via a single variable [J]. Chaos Solitons Fractals, 2008, 38: 461--464.
  • 5Osorio Ivan, Lai Y C. A phase-synchronization and random-matrix based approach to multichan-nel time--series analysis with application to epilep- sy [J]. Chaos, 2001, 21: 025111.
  • 6Zhang J X, Tang W S. Control and synchroniza- tion for a class of new chaotic systems via linear feedback [J]. Nonlinear Dyn, 2009, 58: 675 --686.
  • 7Li W L, Shen Z P. Anti-synchronization of two different chaotic systems [J]. Physica A: Statisti- cal Mechanics and its Applications, 2008, 387: 747-758.
  • 8Mainier R, Rehacek J. Projective synchronization in three-dimensional chaotic systems [J]. Physic Review Letter, 82, 3042--3045 (1999).
  • 9Wang X Y, Zhang X P, Ma C. Modified projective synchronization o{ fractional- order chaotic sys- tems via active sliding mode control [J]. Nonlin- ear Dynamics, 2012, 69: 511--517.
  • 10Matignon D. Stability results for fractional differ- ential equations with applications to control pro- cessing. In: Computational engineering in systems applications multi-conference [J]. Proceeeding of IMACS, IEEE-SMC, Lille, France: 1996: 963-- 968.

共引文献10

同被引文献30

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部