期刊文献+

基于改进TEB算法的阿克曼机器人运动规划系统 被引量:30

Ackerman Robot Motion Planning System Based on Improved TEB Algorithm
下载PDF
导出
摘要 TEB(timed elastic band)算法通过修饰全局路径规划生成的初始轨迹来优化机器人轨迹,得到一条满足机器人运动学动力学约束,避开障碍物,时间较优的轨迹。加速度的变化率过大会使机器人底盘电机输出的力矩突变引起机器人受到冲击震荡,加加速度的约束可使加速度的变化率限定在一个合理的范围,在TEB方法中缺少加加速度约束的基础上,对原始TEB算法进行改进,在轨迹优化过程中构建了具体的加加速度的约束,并在Stage仿真平台对改进TEB算法进行了仿真和在真实的阿克曼机器人上进行了实现,实验结果表明:得到的轨迹满足运动学、动力学,避开障碍物的要求而且平滑,真实机器人运动平顺。可见,改进的TEB算法适用于阿克曼机器人,规划的轨迹效果较好。 The timed elastic band(TEB)algorithm optimized the robot trajectory by modifying the initial trajectory generated by global path planning,and obtained a trajectory that satisfied the constraints of robot kinematics and dynamics,avoided obstacles,and had less total time.If the rate of change of the acceleration is too large,the sudden change in the torque output by the robot’s chassis motor would cause the robot to be shocked.The constraint of jerk could limit the rate of change of acceleration to a reasonable range.Based on the lack of jerk constraint in the TEB method,in the trajectory optimization process,specific jerk constraint was constructed.The improved TEB algorithm was simulated on the Stage simulation platform and implemented on a real Ackerman robot.The experimental result showed that the obtained smooth trajectory met the requirement of kinematics,kinodynamics,and avoided obstacles.It can be seen that the improved TEB algorithm is suitable for Ackerman robots,and the effect of planned trajectory is good.
作者 郑凯林 韩宝玲 王新达 ZHENG Kai-lin;HAN Bao-ling;WANG Xin-da(School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《科学技术与工程》 北大核心 2020年第10期3997-4003,共7页 Science Technology and Engineering
关键词 运动规划 改进TEB算法 局部路径规划 阿克曼机器人 motion planning improved timed elastic band algorithm local path planning Ackerman robot
  • 相关文献

参考文献4

二级参考文献28

  • 1王国胜,吕红涛,吕强.四轮全向移动机器人的双闭环速度控制系统设计[J].装甲兵工程学院学报,2013,27(1):59-64. 被引量:8
  • 2胡春旭,熊枭,任慰,何顶新.基于嵌入式系统的室内移动机器人定位与导航[J].华中科技大学学报(自然科学版),2013,41(S1):254-257. 被引量:35
  • 3邓召文,张福兴.基于转向半径的汽车稳态转向特性分析[J].农业装备与车辆工程,2007,45(1):23-26. 被引量:10
  • 4REN Xiaodong, FENG Zuren, CHANG Hong, MU Ruofeng. Kinematics modeling and analysis for three-wheel omnidirectional mobile robot [ C ]//Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008:2608-2613.
  • 5SIEGWART R, NOUBAKHSH I R. Introduction to autonomous mobile robots[ M ]. MA, USA : MIT Press, 2004:202- 205.
  • 6CHEN Lei, MA Jie, GAO Haibo. Kinematics modeling of eight-wheel lunar rover [ C ]//Proceedings of the 27th Chinese Control Conference. Kunming, China, 2008:346-350.
  • 7TLALE N, DeVILI,IERS M. Kinematics and dynamics modelling of a mecanum wheeled mobile platform [ C ]//15 th International Conference on Mechatronics and Machine Vision in Practice ( M2VIP08 ). Auckland, New-Zealand, 2008: 657 -662.
  • 8MUIR P F, NEUMAN C P. Kinematic modeling of wheeled mobile robots CMU-RI-TR-86-12 [ R ]. Robotics Institute, Carnegie Mellon University, 1956.
  • 9周文琴,贾英民.4轮操纵车辆改进的自适应控制[C]//2002中国控制与决策学术年会论文集.沈阳,2002:168-171.
  • 10MORETFE N, NOVALES C, VIEYRES P. Inverse versus direct kinematics model based on flatness and escape lanes to control CyCab mobile robot[ C ]//2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA, 2008:2240-2245.

共引文献196

同被引文献362

引证文献30

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部