期刊文献+

利用特征距离信息引导决策融合的多模态生物特征识别方法 被引量:3

Multimodal Biometric Recognition on Decision-level Fusion Guided by Feature Distance Information
下载PDF
导出
摘要 传统的决策层融合作为识别系统最末端的融合层次,具有信息量不足的缺点,对于各模态分类性能差异较大的系统,识别率低且可靠性差。提出了一种基于特征距离信息的决策层融合方法,应用于包含虹膜、手掌静脉和手指静脉的多模态生物特征识别系统。以置信度作为权重,通过权重来探索不同模态生物特征识别的性能差异,实现了有效特征信息的提取,并且提高了系统的抗干扰能力。该方法充分考虑了权重因子与特征距离信息和模态分类性能参数之间的复杂关系,将模态的决策偏好通过置信度转化为定量表征,不仅使各模态权重因子的求解更具科学性,而且提高了识别系统在复杂情境下的自适应能力。实验结果表明,该融合方法的识别精度与抗干扰能力优于其他决策层融合算法。 As the last fusion hierarchy in the recognition system,traditional decision-level fusion has the disadvantage of insufficient information,especially for those systems differed in classification performance,the recognition effect is not satisfactory.A novel confidence factor based on feature information was proposed as the weight,in which iris,palm vein,and finger vein were used for the decision in multimodal biometric identification system.Weighting factor was used to explore the difference of performance between modalities to implement the effective feature detection and improve the anti-interference ability.This method fully considers the complex relationship between the weights and modal classification ability and the score information,and transforms the decision preferences into the quantitative characterization.The proposed fusion method makes the identification results more effectively in complex situation decision,the solution of the model weight was more scientific and objective,and has superior performance to other fusion algorithms.
作者 周晨怡 黄靖 杨丰 刘娅琴 ZHOU Chen-yi;HUANG Jing;YANG Feng;LIU Ya-qin(School of Biomedical Engineering,Southern Medical University,Guangzhou 510515,China;Guangdong Provincial Key Laboratory of Medical Image Processing,Southern Medical University,Guangzhou 510515,China)
出处 《科学技术与工程》 北大核心 2020年第10期4036-4042,共7页 Science Technology and Engineering
基金 国家自然科学基金(61771233) 广东省省级科技计划(2013B090500104)。
关键词 多模态生物特征 决策层融合 自适应权重 特征信息 multimodal biometric decision-level fusion adaptive weight feature information
  • 相关文献

参考文献17

二级参考文献81

共引文献78

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部