期刊文献+

椭圆界面问题的高阶差分格式 被引量:1

High-Order Finite Difference Scheme for Elliptic Interface Problem
下载PDF
导出
摘要 构造混合边界条件下椭圆界面问题的一个高阶数值格式.在求解区域内部及界面处采用四阶逼近,边界处采用三阶数值格式,得到一个整体四阶精度的求解格式.数值实验证明了格式的高精度及有效性. In this paper,we propose a high-order finite difference scheme for elliptic interface problems with mixed boundary conditions.The fourth-order approximation is adopted in the solution area and the interface,while a third-order numerical scheme is adopted on the boundary,we obtain a solution scheme with global fourth order accuracy.Numerical experiments are given to illustrate the high accuracy and effectiveness of our scheme.
作者 吴龙渊 翟术英 WU Longyuan;ZHAI Shuying(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2020年第3期400-406,共7页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11701196) 华侨大学中青年教师优秀青年科技创新人才资助项目(ZQNYX502) 华侨大学研究生科研创新能力培养计划项目(17013070009)。
关键词 椭圆界面问题 混合边界 四阶Padé逼近 高阶数值 elliptical interface problem mixed boundary fourth-order Padéapproximation higher-order values
  • 相关文献

参考文献3

二级参考文献15

  • 1FEIREISL E.Exponential attractors for non-autonomous systems: Long-time behaviour of vibrating beams[J].Mathematical Methods in the Applied Sciences,1992,15(4):287-297.
  • 2SHIN J Y.Finite-element approximation of a fourth-order differential equation[J].Computers and Mathematics with Applications,1998,35(8):95-100.
  • 3OHM M R,LEE H Y,SHIN J Y.Error estimates of finite-element approximations for a fourth-order differential equation[J].Computers and Mathematics with Applications,2006,52(3/4):283-288.
  • 4DANG Q A,LUAN V T.Iterative method for solving a nonlinear fourth order boundary value problem[J].Computers and Mathematics with Applications,2010,60(1):112-121.
  • 5SEMPER B.Finite element methods for suspension bridge models[J].Computers and Mathematics with Applications,1993,26(5):77-91.
  • 6孙志忠.偏微分方程数值解法[M].北京:科学出版社,2012:13-15.
  • 7SHIDAMA Y.The Taylor expansions[J].Formalized Mathematics,2004,12(2):195-200.
  • 8SHERMAN A H.On Newton-iterative methods for the solution of systems of nonlinear equations[J].SIAM Journal on Numerical Analysis,1978,15(4):755-771.
  • 9DAVIS P J,RABINOWITZ P.Methods of numerical integration[M].New York: Dover Publications,2007:57-60.
  • 10GAUTSCHI W.Numerical analysis[M].Berlin: Birkhauser Boston,2011:168-178.

共引文献9

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部