期刊文献+

基于改进的免疫克隆蛙跳算法的多约束QoS路由优化研究 被引量:15

Multi-constraints QoS routing optimization based on improved immune clonal shuffled frog leaping algorithm
下载PDF
导出
摘要 针对多约束路由选择问题,设计了数学模型并提出了一种改进的免疫克隆蛙跳算法。所提方法结合了免疫克隆算法与传统蛙跳算法,在分组丢失率、链路带宽、时延抖动、时延、能量损耗条件的限制下,计算源节点到终端节点的能量损耗,通过所提算法寻找一条能量损耗最小的路径。在仿真实验中,将所提算法与自适应遗传算法、自适应蚁群算法进行了对比。实验结果表明,所提算法在一定程度上解决了多约束QoS单播路由优化问题,与自适应遗传算法与自适应蚁群算法相比,所提算法避免了局部最优,有效地降低了数据在传输路径上的能量损耗。 Aiming at the multi-constraint routing problem,a mathematical model was designed,and an improved immune clonal shuffled frog leaping algorithm(IICSFLA)was proposed,which combined immune operator with traditional SFLA.Under the constraints of bandwidth,delay,packet loss rate,delay jitter and energy cost,total energy cost from the source node to the terminal node was computed.The proposed algorithm was used to find an optimal route with minimum energy cost.In the simulation,the performance of IICSFLA with adaptive genetic algorithm and adaptive ant colony optimization algorithm was compared.Experimental results show that IICSFLA solves the problem of multi-constraints QoS unicast routing optimization.The proposed algorithm avoids local optimum and effectively reduces energy loss of data on the transmission path in comparison with adaptive genetic algorithm and adaptive ant colony optimization algorithm.
作者 卢毅 徐梦颖 周杰 LU Yi;XU Mengying;ZHOU Jie(College of Information Science and Technology,Shihezi University,Shihezi 832003,China)
出处 《通信学报》 EI CSCD 北大核心 2020年第5期141-149,共9页 Journal on Communications
基金 兵团中青年科技创新领军人才计划基金资助项目(No.2018CB006)。
关键词 蛙跳算法 服务质量优化 路由优化 遗传算法 蚁群优化算法 shuffled frog leaping algorithm QoS optimization routing optimization genetic algorithm ant colony optimization algorithm
  • 相关文献

参考文献12

二级参考文献92

  • 1周集良,李彩霞,曹奇英.基于遗传算法的WSNs多路径路由优化[J].计算机应用,2009,29(2):521-524. 被引量:17
  • 2崔逊学,林闯.一种带约束的多目标服务质量路由算法[J].计算机研究与发展,2004,41(8):1368-1375. 被引量:13
  • 3孙力娟,王汝传.基于蚁群算法和遗传算法融合的QoS组播路由问题求解[J].电子学报,2006,34(8):1391-1395. 被引量:26
  • 4Wang Zheng, Crowcroft J. Quality of Service Routing for Supporting Multimedia Applications[J]. IEEE Journal on Selected Areas in Communications, 1996, 14(7): 1228-1234.
  • 5Zhang Subing, Liu Zemin. A QoS Routing Algorithm Based on Ant Algorithm[C]//Proceedings of the IEEE International Conference on Communications. [S. l.]: IEEE Press, 2001: 1581-1585.
  • 6Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: [s. n.], 1995: 39-43.
  • 7W Heinzelman, J Kulik, H Balakrishnan. Adaptive Protocols for Infor- mation Dissemination in Wireless Sensor Networks [ C ]//Prec. 5th ACM/IEEE Mobieom, Seattle, WA, Aug 1999:174 - 85.
  • 8C Intanagonwiwat, R Govindan, D Estrin. Directed Diffusion : a Scala- ble and Robust Communication Paradigm for Sensor Networks [ C ]//Proc. ACM Mobi-Com 2000, Boston, MA,2000 : 56 - 5.7.
  • 9Heinzelman W, Chandrakasan A, Balakrishman H. Energy efficient communication protocol for wireless microsensor networks[ C ]//Proc of the 33rd Hawaii International Confel'ence on System Sciences. Maui: IEEE Computer.
  • 10H Luo, Fan YE, J Cheng, et al. TFDD : A Two-tier Data Dissemination Model for Largescale Wireless Sensor Networks [ J ]. Wireless Net- works, 2005,11 (2) :161 - 175.

共引文献42

同被引文献118

引证文献15

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部