期刊文献+

基于机器视觉的目标识别追踪算法及系统设计 被引量:16

Design of object recognition and tracking algorithm and system based on machine vision
下载PDF
导出
摘要 为实现对特定动态目标的准确识别与平稳追踪,提出了一种基于机器视觉的智能算法及系统设计。系统以Jetson TX2为控制核心,采用基于YOLOv3算法的卷积神经网络本地实现动态目标的识别,并结合基于模糊逻辑思想的追踪避障算法识别出目标运动的转向、转动幅度及障碍物位置,实现了对系统的运动进行精确控制且准确避障。系统采用的目标识别追踪算法可以实现对前端摄像头传感器采集的视频流进行实时本地处理及反馈。经测试,系统工作稳定,具有准确性高、实时性强等优点,可以广泛应用于智能跟随行李箱、安防巡逻机器人等智能产品,具有极高的市场应用价值。 In order to achieve accurate identification and stable tracking of specific dynamic targets,an intelligent algorithm and system based on machine vision is proposed. The system uses the Jetson TX2 as the control core,making full use of the YOLOv3 algorithm-based convolutional neural network to realize the dynamic target recognition locally. Combined with the fuzzy logic-based tracking obstacle avoidance algorithm,the target ’s steering,rotation amplitude and obstacle position are identified. It is realized that the precise control of the motion of the system and accurate avoidance for obstacle. The target recognition algorithm used in the system performs real-time local processing and feedback on the front-end video stream. After testing,the system has stable operation,high accuracy and strong real-time performance. It can be widely used in intelligent following luggage,security patrol robots and other intelligent products,with high market application value.
作者 杨宇 刘宇红 彭燕 孙雨琛 张荣芬 YANG Yu;LIU Yuhong;PENG Yan;SUN Yuchen;ZHANG Rongfen(College of Big Data&Information Engineering,Guizhou University,Guiyang 550025,China;Guizhou Provincial Key Laboratory of Public Big Data,Guiyang 550025,China)
出处 《传感器与微系统》 CSCD 2020年第4期92-95,98,共5页 Transducer and Microsystem Technologies
基金 贵州省科技计划项目(黔科合平台人才[2016]5707)。
关键词 机器视觉 识别追踪 Jetson TX2 YOLOv3 模糊逻辑 超声波避障 machine vision recognition tracking Jetson TX2 YOLOv3 fuzzy logic ultrasonic obstacle avoidance
  • 相关文献

参考文献7

二级参考文献141

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献343

同被引文献245

引证文献16

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部