期刊文献+

倾转翼飞机过渡段定高飞行控制研究 被引量:4

Study on Flight Control at Constant Height of a Tilting Wing AircraftIn in transition section
下载PDF
导出
摘要 针对倾转翼飞机过渡段控制存在的时变、欠驱动、强耦合等非线性特点,采用滑模控制来对其进行控制,然后在此基础上引入RBF神经网络,利用其非线性映射能力有效解决了滑模控制中存在的误差问题,进一步改善了系统的动态性能。研究表明,采用基于RBF神经网络的滑模控制方法,可有效提高倾转翼飞机过渡段定高飞行的控制精度,同时也证明了在处理时变、欠驱动、强耦合的非线性系统时,滑模控制与神经网络结合具有其独特的优势。 Aiming at the time-varying,under-actuated,strong coupling and other nonlinear characteristics of tilt-wing aircraft transition control,sliding mode control was used to control the tilt-wing aircraft transition section.Then RBF neural network was introduced to solve the error problem of sliding mode control effectively by using its nonlinear mapping ability.The dynamic performance of the system was improved.The results show that the sliding mode control method based on RBF neural network can effectively improve the control accuracy of the tilting wing aircraft in the transition phase.It also proves that the combination of sliding mode control and neural network has its unique advantages in dealing with time-varying,under-actuated and strongly coupled nonlinear systems.
作者 吴健健 王琦 李之瀚 刘阳 WU Jian-jian;WANG Qi;LIU Yang;LI Zhi-han(Nanchang Hangkong University,Nanchang Jiangxi 330063,China)
机构地区 南昌航空大学
出处 《计算机仿真》 北大核心 2020年第4期48-51,共4页 Computer Simulation
基金 江西省科技厅重点研发计划项目(20151BBE50026)。
关键词 倾转翼 耦合 神经网络 滑模控制 Tilting wing aircraft Coupling RBF neural network Sliding mode control
  • 相关文献

参考文献1

二级参考文献52

  • 1张国琪,吴宏鑫.一类非线性时变系统的全系数自适应控制方法[J].中国科学(F辑:信息科学),2009,39(10):1072-1079. 被引量:2
  • 2肖冬梅,邓宗琦.ABSOLUTE STABILITY OF TIME-VARYING NONLINEAR CONTROL SYSTEM[J].Acta Mathematica Scientia,1999,19(4):442-448. 被引量:1
  • 3许建新,侯忠生.学习控制的现状与展望[J].自动化学报,2005,31(6):943-955. 被引量:76
  • 4武玉强,顾建忠,冯纯伯.带有干扰的线性时变系统的非线性鲁棒控制[J].控制理论与应用,2006,23(1):103-107. 被引量:1
  • 5Shi Z Y, Law S S. Identification of linear time-varying dynamical systems using hilbert transform and empirical mode decomposition method[J]. J of Applied Mechanics- Transactions of the Asme, 2007, 74(2): 223-230.
  • 6Pillonetto G. Identification of time-varying systems in reproducing kernel hilbert spaces[J]. IEEE Trans on Automatic Control, 2008, 53(9): 2202-2209.
  • 7Bermudez J C M, Bershad N J. Transient and tracking performance analysis of the quantized lms algorithm for time-varying system identification[J]. IEEE Trans on Signal Processing, 1996, 44(8): 1990-1997.
  • 8Hsiao T. Identification of time-varying autoregressive systems using maximum a posteriori estimation[J]. IEEE Trans on Signal Processing, 2008, 56(8): 3497-3509.
  • 9Amato F, Ariola M, Cosentino C. Finite-time stability of linear time-varying systems: Analysis and controller design[J]. IEEE Trans on Automatic Control, 2010, 55(4): 1003-1008.
  • 10Oliveira R C L F, Peres P L D. Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design[J]. Automatica, 2009, 45(11): 2620-2626.

共引文献10

同被引文献32

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部