期刊文献+

CNN_BiLSTM双通道维吾尔语名词短语指代消解

Coreference Resolution of Uyghur Noun Phrases Based on CNN_BiLSTM
下载PDF
导出
摘要 提出了一种利用CNN_BiLSTM双重通道模型的维吾尔语名词短语指代消解。利用包含维语语言特点的Hand-crafted特征初步筛选先行语和照应语,减少不必要的负例,然后使用wordembedding将先行语和照应语向量化,并作为CNN_BiLSTM双重通道模型的输入,使用双通道模型提取空间语义特征和时间语义特征。两种特征融合之后训练softmax分类器,最终完成指代消解任务。上述方法在维吾尔语名词短语指代消解任务中的准确率为84.3召回率为78.1,F1值为81。实验结果表明,充分利用CNN和BiLSTM分别提取时间和空间双重特征的,可以有效提高维吾尔语名词短语指代消解的性能。 We proposed a dual channel model for coreference resolution of Uyghur noun phrase. First, we screened the antecedent and anaphora by using the Hand-crafted features which were full of language characteristics of Uygur, In this way, we can reduce the unnecessary negative cases. Then, they were vectorized by using word embedding. These vectors can be the input to the CNN_BiLSTM dual channel model. So we can get the spatial semantic features and temporal semantic features. At last, we integrated these features and training softmax to finish the anaphora resolution task. Our experiment show that the precision rate, the recall rate and F value respectively reach 84.3%, 78.1% and 81%, which demonstrates the efficiency of the dual channel model.
作者 张江 田生伟 禹龙 ZHANG Jiang;TIAN Sheng-wei;YU Long(School of Software Xinjiang University,Urumqi Xinjiang 830008,China;Network Center,Xinjiang University,Urumqi Xinjiang 830046,China)
出处 《计算机仿真》 北大核心 2020年第4期255-259,共5页 Computer Simulation
基金 国家自然科学基金(61563051,61662074,61262064) 国家自然科学基金重点项目(61331011) 新疆自治区科技人才培养项目(QN2016YX0051)新疆天山青年计划项目(2017Q001)。
关键词 卷积神经网络 长短时记忆网络 指代消解 词向量 CNN BiLSTM Coreference resolution Word embedding
  • 相关文献

参考文献4

二级参考文献22

  • 1王厚峰,梅铮.鲁棒性的汉语人称代词消解[J].软件学报,2005,16(5):700-707. 被引量:36
  • 2周俊生,黄书剑,陈家骏,曲维光.一种基于图划分的无监督汉语指代消解算法[J].中文信息学报,2007,21(2):77-82. 被引量:19
  • 3Wee. Meng Soon, Hwee Tou Ng and Daniel Chung Yong lim. A machine learning approach to coreference resolution of noun phrase[J]. Computational Linguistics,2001,27(4): 521-544.
  • 4Vincent Ng and Claire Cardie. Improving machine learning approaches to coreference resolution [C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,2002.
  • 5YangX. F., Su J., Zhou G.D. and Tan C. L. 2004 Improving pronoun resolution by incorporating eorefer ential information of candidates[C]//ACL'2004:127 134, Barcelona, Spain, 21-26, July,2004 .
  • 6Yang X.F. ,Zhou G.D. , Su J. and. Tan C. L. 2003. Coreference Resolution Using Competition Learning Approach[C]//ACL'2003: 176-183, Sapporo, Japan, 7-12, July, 2003.
  • 7Yang X. F. , Su J. and Tan C.L. 2006, Kernel-Based Pronoun Resolution with Structured Syntactic Knowl edge[C]//ACL' 2006..41-48, Sydney,July. 2006.
  • 8Zhou G. D. and Su J. 2004. A high-performance coreference resolution system using a multi-agent strategy[C]//COLING'2004:522-528. 23 27, Aug, 2004, Geneva, Switzerland.
  • 9Zhou GD. and Su J. 2002. Named Entity Recognition using an HNMM-based Chunk Tagger[C]//ACL' 2002: 473-480, Philadelphia, July,2002.
  • 10Grosz, A. JoShi, and S. Weinstein. 1983. Providing a unified account of definite noun phrases in discourse [C]//Proceedings of the 21st Annual meeting of the Association for Computational Linguistics, 44-45.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部