期刊文献+

新型稀疏自动编码器组合的深度学习方法 被引量:5

Deep Learning Method Based on Improved Sparse Automatic-Encoder Combination
下载PDF
导出
摘要 针对自动编码器在强噪声环境下分类效果低的特征,提出了基于改进型稀疏自动编码器组合的深度学习方法。在采用计算相关熵的方法,增强了稀疏自动编码器对非高斯噪声的鲁棒性的基础上,利用卷积神经网络对自动编码器进行边缘降噪,接着将改进后的稀疏自动编码器和边缘降噪自动编码器相结合,得到新的稀疏边缘降噪自动编码器。实测数据的实验结果表明,新的稀疏边缘降噪自动编码器比现有的分类算法,计算时间更短、准确率更高、效果更明显。 Since the poor classification results of traditional auto-encoders when applied to datasets with strong noise, we proposed a new method which is a combination of spare auto-encoder and deeplearning technique. On the basis that the spare auto-encoder’s robustness against non-Gaussian noise is increased by computing relative entropy, a convolutional neural network was used to reduce its marginal noise. Then combining the improved spare auto-encoder with marginalized denoising auto-encoder, the new spare marginalized denoising auto-encoder was obtained. The testing results show that our method has less runtime and higher accuracy than traditional ways.
作者 卫佳乐 丁正生 WEI Jia-le;DING Zheng-sheng(School of Science,Xi’an University of Science and Technology,Xi'an 710054,China)
出处 《计算机仿真》 北大核心 2020年第4期280-284,共5页 Computer Simulation
基金 国家自然科学基金(71473194)。
关键词 强噪声环境 自动编码器 误差函数 相关熵 卷积神经网络 Strong noise environment Auto-encoder Error function Joint entropy Convolutional neural network(CNN)
  • 相关文献

参考文献6

二级参考文献71

  • 1贾世杰,邹娟,王茹香.基于类词包技术的图像分类算法[J].化工自动化及仪表,2012,39(11):1465-1467. 被引量:2
  • 2Le Q V,Ndiam J,Coates A,et al.On optimization methods for deep learning[C]//The 28th International Conference on Machine Learning.Bellevue,Washington,June 28-July 2,2011:4-7.
  • 3Mairal J,Koniusz P,Harchaoui Z,et al.Convolutional kernel networks[DB/OL].[2014-06-12][2014-09-24]http://arxiv.org/abs/1406.3332.
  • 4Szegedy C,Liu W,Jia Y,et al.Going deeper with convolutions[DB/OL].[2014-09-17][2014-09-24]http://rxiv.org/abs/1409.4842.
  • 5Lecun Y,Kavukcuoglu K,Farabet C.Convolutional networks and applications in vision[C]//IEEE International Symposium on Circuits and Systems.Pairs,May 30-June 2,2010:253-256.
  • 6Bengio Y.Deep learning architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127.
  • 7Hubel D H,Wiesel T N.Receptive fields,binocular interaction and functional architecture in the cat's visual cortex[J].The Journal of Physiology,1962,160(1):106-154.
  • 8Bouvrie J.Notes on convolutional neural networks[DB/OL].[2006-09-22][2014-09-24].http://cogprints.org/5869/1/cnn _tutorial.pdf.
  • 9Lecun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 10Krizhevsky A,Sutskever I,H inton G E.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,Annual Conference.Lake Tahoe,Nevada,Dec.3-6,2012:1097-1105.

共引文献1823

同被引文献45

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部