摘要
本文研究了(2+1)维扩展浅水波方程,通过变量变换得到双线性形式.基于符号计算,获得一类新奇精确解.这些解包含一个任意实函数φ(y),选择特殊的函数φ(y)得到了这些解的动态图,孤子传播表明含有φ(y)的孤子比没有φ(y)的孤子更一般,并且φ(y)可以影响孤子解的特征.
Under investigation in this paper is a(2+1)-dimensional extended shallow water wave equation.A bi-linear form is obtained through variable transformation and a novel type of exact solutions is derived based on symbolic computation.These solutions include an arbitrary real function φ(y),the selection of which produces a dynamic graph of these solutions.Discussions on the propagation of the solitons indicate that the soliton solutions with φ(y) are more general than those without φ(y),and φ(y) could affect the features of the soliton solutions.
作者
刘卿君
查石友
LIU Qingjun;ZHA Shiyou(College of Economics and Management,Qujing Normal University,Qujing,China 655011;Xundian No.1 Secondary School,Xundian,China 655200)
出处
《温州大学学报(自然科学版)》
2020年第2期11-16,共6页
Journal of Wenzhou University(Natural Science Edition)
关键词
(2+1)维扩展浅水波方程
新奇精确解
任意函数
(2+1)-dimensional Extended Shallow Water Wave Equation
Novel Exact Solutions
Arbitrary Function