摘要
采用计算流体力学(CFD)技术数值研究低温液氧贮箱在外部晃动激励下箱内气液界面动态响应。计算中详细考虑了外部漏热以及气液相间相变对箱体热力耦合过程的影响,通过用户自定义程序将外部正弦激励加载到低温贮箱壁面作为动量边界,采用流体体积(VOF)方法精确捕捉晃动过程气液界面波动变化。通过与相关晃动实验结果对比,验证了本文所构建数值模型的有效性。基于所构建数值模型,对流体晃动进行数值模拟,获得了外部正弦激励下,箱体内部气液相分布以及界面形状变化;通过设置动态监测点,分析了气液界面晃动动态响应。结果表明,流体晃动对低温贮箱内部气液界面动态响应具有较大影响。为抑制流体大幅波动,需采取合适的防晃措施。
The computational fluid dynamics(CFD)technique is used to investigate the dynamic response of liquid-vapor interface in a cryogenic liquid oxygen tank under the external sloshing excitations.The influences of the external environmental heat leak and the phase change occurring at the liquid-vapor interface are considered in the thermal-dynamic process.The external excitation is realized by user defined functions.To accurately capture the movement of liquid-vapor,the volume of fluid(VOF)method is adopted.Compared against to the related sloshing experiment results,the present developed numerical model was proven to be greatly accurate.Based on the developed model,numerical simulation is conducted for fluid sloshing.The liquid-vapor phase distribution and the variation profiles of the free interface are obtained.The dynamic responses of interface are analyzed by setting dynamic monitors.The results show that the fluid sloshing has caused large influences on the dynamic response of liquid-vapor interface in cryogenic liquid oxygen tank.Some proper technique measures should be used to suppress large amplitude fluid sloshing.
作者
刘展
冯雨杨
厉彦忠
LIU Zhan;FENG Yu-Yang;LI Yan-Zhong(Laboratory of Mine Cooling and Coal-heat Integrated Exploitation,China University of Mining and Technology,Xuzhou 221116,China;School of Mechanics and Civil Engineering,China University of Mining and Technology,Xuzhou 221116,China;School of Energy and Power Engineering,Xi’an Jiaotong University,Xi'an 710049,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2020年第5期1087-1094,共8页
Journal of Engineering Thermophysics
基金
国家自然科学基金(No.51806235)
江苏省自然科学基金(No.BK20180654)
中国博士后科学基金(No.2018M630625)
航天低温推进剂技术国家重点实验室开放课题(No.SKLTSCP1812)。
关键词
低温贮箱
动态响应
气液界面
晃动激励
cryogenic tanks
dynamic response
liquid-vapor interface
slosh excitation