期刊文献+

浆料气力提升系统压降特征研究 被引量:1

Research on Pressure Drop Characteristics of Slurry Airlift System
原文传递
导出
摘要 在构建浆料气力提升系统动量模型与效率模型过程中发现,管内压降模型及其变化特征对上述模型精度影响极为重要。鉴于此,以进气口为分界面,基于能量守恒并结合相含率方程分别建立液-固两相压降和气-液-固三相压降模型。计算结果表明,在两相段及三相段内,压降随管径增加均表现出先急速下降,之后趋于恒定的特征,且两相段内压降鲜受气体表观流速影响,而三相段内压降却随其增加表现出显著下降趋势。此外,无论是在两相段还是三相段内,压降实测结果与计算值吻合较好,特别是在较高浸入率和低气体表观流速工况下,两者吻合程度更佳。 In the modeling of the momentum and the efficiency of the slurry airlift system,the pressure distribution in the mixture flow is of great importance to the accuracy of the model.Taking the intake surface as the interface,a liquid-solid two-phase model and a gas-liquid-solid three-phase model are established based on the law of energy conservation and the phase hold-up rate equation.The calculated results illustrated that in the two-phase and the three-phase sections,the pressure drop decreases dramatically with the increase of the pipe diameter at first.Within the some characteristic pipe diameter,the pressure drop tends to be constant.In the two-phase section,the pressure drop has been found to be insensitive to the velocity of the gas flow.In the three-phase section,however,the pressure drop varies significantly with the velocity of the gas flow.In addition,experimental results coincide nicely with the calculated results in both the two-phase section and the three-phase section,especially under the condition of large submergence ratio and the low gas flow rate.
作者 胡东 王晓川 唐川林 林鹏 HU Dong;WANG Xiao-Chuan;TANG Chuan-Lin;LIN Peng(College of Energy and Mechanical Electrical Engineering,Hunan University of Humanities,Loudi 417000,China;Key Laboratory of Hubei Province for Water Jet Theory&New Technology,Wuhan University,Wuhan 430072,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2020年第5期1153-1159,共7页 Journal of Engineering Thermophysics
基金 湖南省重点领域研发计划项目(No.2019SK2192) 湖南省自然科学基金项目(No.2018JJ2195) 湖南省教育厅科研项目(No.18A419,No.19B298)。
关键词 气力提升 压降模型 管径 气体表观流速 airlift pressure drop moded pipe diameter air superficial velocity
  • 相关文献

参考文献4

二级参考文献33

  • 1曹夏昕,阎昌琪,孙立成,孙中宁,黄渭堂.竖直管内弹状流向搅混流转变界限的判定[J].核动力工程,2006,27(z1):68-72. 被引量:4
  • 2江天寿.钻孔水力采矿研究试验的新进展[J].西部探矿工程,1997,9(4):41-44. 被引量:2
  • 3Chi Ho Yoon, Yong Chan Park, Dong Kil Lee. Numerical analysis of solid-liquid-air three-fluid transient flow for air lift system[ A ]. 14th International Offshore and Polar Engineering Conference [ C ]. Toulon, France:The International Society of Offshore and Polar Engineers ,2004:66 - 70.
  • 4Samaras V C, Margaris D P. Two-phase flow regime maps for air-lift pump vertical upward gas-liquid flow [ J ]. International Journal of Muhiphase Flow,2005,31 ( 1 ) :757 -766.
  • 5Yoshinaga T, Sato Y. Performance of an air-lift pump for conveying coarse panicles [J].Int. J. Muhiphase Flow, 1996,22 ( 3 ) : 223 - 238.
  • 6Nai-Kuang Lianga, Hai-Kuen Pengb. A study of air-lift artificial up- welling[ J]. Ocean Engineering,2005,32( 1 ) :731 -745.
  • 7Kovacs L, varadi S, Hungary. Determination of parameters of solid particles moving in the air lift tank[ J]. Powder Handing & Processing,2006,18 (1) :26 -30.
  • 8Ichiro Todoroki, Yoshifusa SaTo. Performance of air-lift pump [ J ]. The Japan Society of Mechanical Engineers, 1973,16 (4) :733 - 741.
  • 9Fadel F Erian, Leonard F Pease Ⅲ. Three-phase upward flow in a vertical pipe [ J]. International Journal of Muhiphase Flow, 2007,33 ( 1 ) :498 - 503.
  • 10Bamea D, Taitel Y. Structural and interracial stability of multiple solutions of stratified flow [J]. International Journal of Multiphase Flow,1992,18(2) :821 -831.

共引文献24

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部