期刊文献+

基于多元特征的微博被劫持账户检测 被引量:1

Compromised Accounts Detection in Weibo Based on Multiple Features
原文传递
导出
摘要 微博作为一个拥有大量用户的社交平台,其较大的影响力与开放性吸引了攻击者的目光。攻击者会利用异常账户进行网络犯罪,对异常账户的检测是维护社交网络安全的重要途径之一。基于攻击者的常规行为以及正常用户的行为特征,提出了一种微博中被劫持账户的检测方法。该方法使用6个特征对用户行为进行分析,使用异常得分刻画用户行为的异常程度,使用传统机器学习分类器检测被劫持账户。为验证本文方法的有效性,采用了由复旦大学提供的公开微博数据集进行实验,结果表明,采用决策树分类器时,本文方法对被劫持账户的检测精确率高达97.5%。 As a social platform with a large number of users, Weibo has attracted the attention of attackers because of its significant influence and openness. Attackers will utilize anomaly accounts for cybercrime. One of preserving social network security methods is detecting anomaly accounts. Based on attackers’ routine behavior and benign users’ behavior features, this paper proposes a method to detect compromised accounts. In this paper, we use six features to analyze users’ behaviors and propose the abnormal scores to evaluate the degree of violation. To verify the effectiveness of our method, the public Weibo dataset provided by Fudan University is used in the experiment and the results show that the precision of our method for detecting compromised accounts can achieve 97.5% when using the decision tree classifier.
作者 王丽娜 柯剑鹏 叶傲霜 王文琦 WANG Lina;KE Jianpeng;YE Aoshuang;WANG Wenqi(Key Laboratory of Aerospace Information Security and Trusted Computing,Ministry of Education,Wuhan University,Wuhan 430072,Hubei,China;School of Cyber Science and Engineering,Wuhan University,Wuhan 430072,Hubei,China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2020年第2期95-102,共8页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(U1836112,61876134) 国家重点研发计划(2016YFB0801100)。
关键词 社交网络安全 被劫持账户检测 行为特征模型 微博 social network security compromised accounts detection behavior feature model Weibo
  • 相关文献

参考文献1

二级参考文献92

  • 1Ellison N B. Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 2007, 13(1): 210-230.
  • 2Gao H, Hu J, Huang T, et al. Security issues in online social networks. IEEE Internet Computing, 2011, 15(4): 56-63.
  • 3Fire M, Goldschmidt R, Elovici Y. Online social networks: Threats and solutions survey. IEEE Communications Surveys and Tutorials, 2013, 16(4): 2019-2036.
  • 4Caviglione L, Coccoli M, Merlo A. A taxonomy-based model of security and privacy in online social networks. International Journal of Computational Science and Engineering, 20149 9(4): 325-338.
  • 5Thomas K, McCoy D, Grier C, et al. Trafficking fraudulent accounts: The role of the underground market in Twitter spam and abuse//Proceedings of the 22nd USENIX Security Symposium. Washington, USA, 2013:195-210.
  • 6Huang T K, Rahman M S, Madhyastha H V, et al. An analysis of socware cascades in online social, networks// Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro, Brazil, 2013:619-630.
  • 7Chu Z, Gianvccchio S, Wang H, et al. Who is tweeting on Twitter: Human, bot, or cyborg?//Procccdings of thc 26th Annual Computer Security Applications Conference. Austin, USA, 2010:21-30.
  • 8Kanich C, Kreibich C, Levchenko K, et al. Spamalytics: An empirical analysis of spam marketing conversion//Proceedings of the 15th ACM Conference on Computer and Communications Security. Alexandria, USA, 2008:3-14.
  • 9Stringhini G, Wang G, Egele M, et al. Follow the green: Growth and dynamics in Twitter follower markets//Proceedings of the 2013 Conference on Interne, Measurement Conference. Barcelona, Spain, 2013:163-176.
  • 10Xue J, Yang Z, Yang X, et al. VoteTrust: Leveraging friend invitation graph to defend against social network sybils //Proceedings of the 32nd IEEE International Conference on Computer Communications. Turin, Italy, 2013:2400-2408.

共引文献25

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部