期刊文献+

六维力/力矩传感器研究发展综述 被引量:4

Review on Research and Development of Six-Axis Force/Torque Sensor
下载PDF
导出
摘要 六维力/力矩传感器是机器人实现柔顺化、智能化操作的关键传感设备,目前已广泛应用于工业机器人、康复医疗机器人、空间机器人等智能化装备。介绍了国内外六维力/力矩传感器弹性体结构的研究现状及发展趋势;详细论述了全方位机械过载保护与动态性能两个方面的关键技术问题;分析了在常规环境和航空航天、深海等特殊环境的应用现状,着重阐述空间六维力/力矩传感器机械过载保护、温度补偿及容错关键技术问题和深海六维力/力矩传感器压力动态平衡、密封及防腐蚀等关键技术问题;并对六维力/力矩传感器的发展方向进行了展望。 The six-axis force/torque sensor( SAF/TS) is one of the key sensors in compliant and intelligent robotic applications. It has been widely used in industrial robots,rehabilitation medical robots,space robots and other intelligent equipments. The research progress and development trends of SAF/TS elastic structure both at home and abroad are introduced. The key technologies of all-round mechanical overload protection and dynamic performance are elaborated specifically. The status quo of application in conventional and special environments such as aerospace and deep sea are analyzed,and the key techniques are mainly described such as overload protection,temperature compensation and fault-tolerant,as well as the pressure dynamic balance,sealing and anti-corrosion of SAF/TS. The development of SAF/TS is also predicted.
作者 曹会彬 葛运建 孙玉香 王耀雄 高理富 CAO Hui-bin;GE Yun-jian;SUN Yu-xiang;WANG Yao-xiong;GAO Li-fu(Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China)
出处 《测控技术》 2020年第5期15-20,58,共7页 Measurement & Control Technology
基金 中国科学院战略性先导科技专项(A类)(XDA22040303) 安徽省自然科学基金项目(1808085QF214)。
关键词 六维力/力矩传感器 弹性体结构 过载保护 动态性能 SAF/TS elastic structure overload protection dynamic performance
  • 相关文献

参考文献5

二级参考文献29

  • 1徐科军.多维腕力传感器时域动态建模[J].科学通报,1993,38(21):2009-2012. 被引量:15
  • 2俞阿龙.遗传算法结合FLNN实现加速度传感器动态特性补偿[J].计量学报,2005,26(4):347-350. 被引量:7
  • 3刘刚,刘学仁.基于递归神经网络的加速度传感器动态特性补偿[J].传感器与微系统,2007,26(7):70-72. 被引量:4
  • 4殷勤业 杨宗凯.模式识别与神经网络[M].北京:机械工业出版社,1995.1-50.
  • 5戴葵.神经网络设计[M].北京:机械工业出版社,2002.399-421.
  • 6Popoviciu N,Boncut M.A Complete Sequential Learning Algorithm for RBF Neural Networks with Applications[J].WSEAS Transactions on Systems,2007,6(1):24-31.
  • 7Staiano A,Tagliaferri R,Pedrycz W.Improving RBF Networks Performance in Regression Tasks by Means of a Aupervised Fuzzy Clustering[J].Neurocomputing,2006,69(13-15):1570-1581.
  • 8Pehlivanoglu Y Volkan,Baysal O.Vibrational Genetic Algorithm Enhanced with Fuzzy Logic and Neural Networks[J].Aerospace Science and Technology,2010,14(1):56-64.
  • 9Vasconcelos J A,Ramirez J A,Takahashi R H C,et al.Improvements in Genetic Algorithms[J].IEEE Transactions on Magnetics,2001,37(5):3414-3417.
  • 10黄德双,神经网络模式识别系统理论,1996年,31页

共引文献60

同被引文献36

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部