期刊文献+

多重随机六角链的广义Zagreb指标

The General Zagreb Index of Random Multiple Hexagonal Chain
下载PDF
导出
摘要 令G是一个图,顶点集为V(G),边集为E(G).对于任意非负整数r和s,图G的广义Zagreb指标定义为:M{r,s}(G)=Σe=uv∈E(G)(du^rdv^2+du^2dv^r).一个多重随机六角链是通过对含有n个六边形的线性六角链的m个拷贝依次进行融合而形成的.在本文中,我们给出了多重随机六角链的广义Zagreb指标的明确结果和多重随机六角链的广义Zagreb指标的期望值. Let G be a graph with vertex set V(G)and edge setE(G).For■r,s≥0,the general Zagreb index of G is definedas:M{r,s}(G)=Σe=uv∈E(G)(du^rdv^2+du^2dv^r).In this paper,we studied the general Zagreb index of a kind of random model of hexagonal system-random multiple hexagonal chain whose growth process is m copies of linear hexagonal chain with n hexagon merged in turn,and presented the expected value of the general Zagreb index of random multiple hexagonal chain.
作者 薛淑婷 边红 于海征 XUE Shuting;BIAN Hong;YU Haizheng(School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830017,China;College of Mathematics and System Science,Xinjiang University,Urumqi 830046,China)
出处 《河南科学》 2020年第4期517-523,共7页 Henan Science
基金 国家自然科学基金项目(11761070,61662079) 2020年度新疆研究生创新基金项目 新疆师范大学“十三五”校级重点学科数学资助(17SDKD11) 新疆师范大学重点实验室招标课题(XJNUSYS082017A02)。
关键词 六角链 多重随机六角链 广义Zagreb指标 期望值 hexagonal chain random multiple hexagonal chain general Zagreb index expected value
  • 相关文献

参考文献3

二级参考文献23

  • 1GUTMAN I,POLANSKY O E.Mathematical concepts in organic chemistry[M].Berlin:springer,1986.
  • 2CVETKOVIC D M,DOOB M,SACHS H.Spectra of graphs-theory and application[M].New York:academic press,1980.
  • 3BONDY I A,MURTY U S R.Graph theory with applications[M].New York:American elsevier,1976.
  • 4SHIU W C,LAM P C B,ZHANG L Z.Fully angular hexagonal chains extrenal with regard to the largest eigenvalue[J].Indial J chem,2003,42A:1298-1303.
  • 5I.GUTMAN(Ed).Advance in the theory of benzenoid hydrocarbons topics in current chemistry[M].Berlin:springer,1992,163.
  • 6ZHANG F J,LI Z M,WANG L S.Hexagonal chains with minimal total pi-electron energy[J].Chem Phys Lett,2001,337(1-3):125-130.
  • 7GUTMAN I, POLANSKY O E. Mathematical Concepts in Organic Chemistry [M]. Berlin: Spinger, 1986.
  • 8KHADIKAR P V, DESHPANDE N V, KALE P P, et al. The Szeged and an Analogy with the Winner Index [J].J Chem Inf Comput Sci, 1995, 35: 547--550.
  • 9DAS K C, GUTMAN I. Estimating the Szeged Index [J]. Applied Mathematics Letters, 2009, 22:1680--1684.
  • 10KHADIKAR P V, KALE P P, DESHPANDE N, et al. Novel PI Indices of Hexagonal Chains [J]. Journal of Mathe- matical Chemistry, 2001, 29: 143--150.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部