摘要
令G是一个图,顶点集为V(G),边集为E(G).对于任意非负整数r和s,图G的广义Zagreb指标定义为:M{r,s}(G)=Σe=uv∈E(G)(du^rdv^2+du^2dv^r).一个多重随机六角链是通过对含有n个六边形的线性六角链的m个拷贝依次进行融合而形成的.在本文中,我们给出了多重随机六角链的广义Zagreb指标的明确结果和多重随机六角链的广义Zagreb指标的期望值.
Let G be a graph with vertex set V(G)and edge setE(G).For■r,s≥0,the general Zagreb index of G is definedas:M{r,s}(G)=Σe=uv∈E(G)(du^rdv^2+du^2dv^r).In this paper,we studied the general Zagreb index of a kind of random model of hexagonal system-random multiple hexagonal chain whose growth process is m copies of linear hexagonal chain with n hexagon merged in turn,and presented the expected value of the general Zagreb index of random multiple hexagonal chain.
作者
薛淑婷
边红
于海征
XUE Shuting;BIAN Hong;YU Haizheng(School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830017,China;College of Mathematics and System Science,Xinjiang University,Urumqi 830046,China)
出处
《河南科学》
2020年第4期517-523,共7页
Henan Science
基金
国家自然科学基金项目(11761070,61662079)
2020年度新疆研究生创新基金项目
新疆师范大学“十三五”校级重点学科数学资助(17SDKD11)
新疆师范大学重点实验室招标课题(XJNUSYS082017A02)。