期刊文献+

移动群智感知框架下的能源有效性方法研究 被引量:2

Research on Energy-efficiency in Mobile Crowding Sensing
下载PDF
导出
摘要 移动群智感知任务中的数据类型多以图片和长视频为主,因而在其任务执行过程中容易造成大量能耗。以提高群智感知框架下的能源有效性为研究目标,以手机电量消耗为能耗指标,提出面向单体节能技术与面向全局节能技术相结合的方法,实现手机能源最大化利用。结合Android开发过程中的部分算法优化与移动群智感知任务执行中的节能模块(文本转换模块、图片压缩模块、视频压缩模块等),实现单体能耗更低。在此基础上,结合面向全局的参与者优选模型,选择合适的执行团队用更少电量完成一定量任务,实现能耗最小化。通过实验设计和验证,使用单体节能与整体节能相结合的节能方法,在降低整体能耗时能够将手机能耗降低至少20%。 The data types of the mobile crowd sensing task are mainly pictures and long videos.Therefore,it is easy to generate a large amount of energy consumption in the execution of the task.The purpose of this paper is to improve the energy efficiency of the framework of mobile crowd sensing.We take the power consumption of mobile phones as the energy consumption index.In order to maximize the use of mobile phone energy,a method of combining the energy saving technology oriented to single people and the energy saving technology oriented to the whole is proposed in this paper.Specifically,we combine the method of optimizing some algorithms in the Android development process and the energy saving modules,such as text conversion module,image compression module,video compression module,etc.Then we achieve lower energy consumption of personal mobile phones.On this basis,we combine with the overall participant optimization model,and select the right team to execute task sets in less electricity.Thus,when we execute a certain amount of tasks by using the method of this paper,we can minimize energy consumption.Experiments have shown that the energy consumption of mobile phones can be reduced by at least 20%.
作者 苏江宾 於志文 刘一萌 郭斌 SU Jiang-bin;YU Zhi-wen;LIU Yi-meng;GUO bin(School of Computer Science,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《软件导刊》 2020年第4期28-36,共9页 Software Guide
关键词 移动群智感知 深度优先搜索算法 参与者优选 单体节能 整体节能 mobile crowd sensing depth first search algorithm participant optimization the single energy saving the overall energy saving
  • 相关文献

参考文献3

二级参考文献14

  • 1刘云浩.群智感知计算[J].中国计算机学会通讯,2012,8(10):38-41.
  • 2GANTI R K, YE F, and LEI H. Mobile Crowdsensing: Current State and Future Challenges [J]. IEEE Communications Magazine, 2011,49 (11 ): 32-39.
  • 3MA H D, ZHAO D, and YUAN P. Opportunities in Mobile Crowd Sensing [J] IEEE Communications Magazine, 2014, 52 (8): 29-35.
  • 4CAMPBELL A, EISENMAN S, LANE N, et al. The Rise of People-Centric Sensing [J]. IEEE Internet Computing, 2008, 12 (4): 12-21.
  • 5BURKE J, ESTRIN D, HANSEN M, et al. Participatory Sensing [C] // Workshop on World-Sensor-Web, Co-Located with ACM SenSys, Boulder, Colorado, USA, 2006:1-5.
  • 6LANE N, EISENMAN S, MUSOLESl M, et al. Urban Sensing Systems: Opportunistic or Participatory? [C]//in Proceedings of HotMobile, Silverado Resort, Napa Valley, USA, 2008:11-16.
  • 7ZHAO-DMA H D, LiU L, and LI X Y. Opportunistic Coverage for Urban Vehicular Sensing [J]. Computer Communications, 2015:71-85. doi:lO.1016/j. comcom.2015.01.018.
  • 8LIU L, WEI W, ZHAQ D, and MA H D. Urban Resolution: New metric for Measuring the Quality of Urban Sensing [J]. IEEE Transation on Mobile Computing, 2015(09): 21-25. doi: 10.1109fFMC.2015.2404786.
  • 9CHON Y, LANE N, KIM Y, et al. Understanding the Coverage and Scalability of Place-Centric Crowd Sensing[C]//in Proceedings of ACM UbiComp, Zurich, Switzerland, 2013:3-12.
  • 10KQUSQPOULQS I. Optimal Incentive- Driven Design of Participatory Sensing Systems[C]//Proceedings of IEEEINFOCOM, Turin, Italy, 2013:1402-1410.

共引文献32

同被引文献29

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部