期刊文献+

NSD序列加权和的完全收敛性及其应用 被引量:1

Complete Convergence for the Weighted Sums of NSD Sequences and Its Application
下载PDF
导出
摘要 研究了NSD(negatively superadditive dependent)随机变量序列的极限定理.利用截尾技术和NSD随机变量序列的性质讨论了NSD随机变量加权和Sn=n∑i=1 anixi的完全收敛性,并将其结果应用于含参数β的最小二乘估计的线性回归模型中及关于g的权函数非参数回归模型估计中,分别得到了强相合性. In this paper,we investigate some limit theorems for weighted sums of sequences of NSD random variables.By using the truncation technique and the properties of sequences of NSD random variables,we obtain the complete convergence for weighted sums of sequences of NSD random variables.Applying these results to the linear regression model containing the least square estimation of parameterβ,and to the estimation of the nonparametric regression model of the weight function about g,we obtain their strong consistency.
作者 蔡婷 胡宏昌 CAI Ting;HU Hong-chang(College of Mathematics and Statistics,Hubei Normal University,Huangshi Hubei 435002,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期126-131,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11471105) 湖北省教育厅科学技术研究项目(Q20172505).
关键词 NSD随机变量序列 加权和 完全收敛性 sequence of negatively superadditive dependent random variables weighted sum complete convergence
  • 相关文献

参考文献5

二级参考文献18

共引文献47

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部