期刊文献+

幂交半格上的交同余及其性质

Intersection Congruence and the Property of Power Intersection Semilattice
原文传递
导出
摘要 给出了幂交半格上几个具体的交同余,证明了任意多个交同余的并是交同余,并指出幂交半格的交同余类是子交半格,介绍了幂交半格上由θ诱导的交同余具有保并性和保序性。 In this paper, we give some concrete intersection congruences on power intersection semilattice. It is proved out that union set of any number of intersection congruences are intersection congruences. It is pointed out that the class of intersection congruence of power intersection semilattice is subintersection semilattice. It is introduced that the intersection congruence induced by θ has union preserving and order preserving on power intersection semilattice.
作者 王亚贤 吴妙玲 史佳鸿 WANG Ya-xian;WU Miao-ling;SHI Jia-hong(School of Science,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《模糊系统与数学》 北大核心 2020年第2期29-33,共5页 Fuzzy Systems and Mathematics
基金 内蒙古工业大学教改项目(2017238)。
关键词 交半格 幂交半格 交同余 交同余类 Intersection Semilattice Power Intersection Semilattice Intersection Congruence Intersection Congruence Class
  • 相关文献

参考文献5

二级参考文献29

  • 1邵海琴.幂半群的同态与同余[J].天水师范学院学报,2008,28(2):14-16. 被引量:5
  • 2明平华.幂格与商格的关系[J].数学物理学报(A辑),2004,24(4):491-495. 被引量:9
  • 3李洪兴 汪培庄.幂群[J].应用数学,1988,1(1):1-4.
  • 4[6]HOWIE.J.M..Fundamentals of semigroups theory[M].Oxfor-d:Oxford Science Publication,1995.
  • 5Gratzer G. General lattice theory[M]. New York:Academic, 1978.
  • 6Birkhoff G. Lattice theory. 3nd ed [M]. New York:American Mathematical Society, 1967.
  • 7H. B. Cui, C. Y. Zheng. Stratification Structures on a kind of Completely Distributive Lattices and Their Applications in the Theory of Topological Molecular Lattoces[J]. Fuzzy Sets and System,1999. (106) : 449-454.
  • 8Gratzer G. General Lattice theory[M]. New York: Academic, 1978.
  • 9Tamura T, Sharer J. Power semigroups[J]. Math. Japan, 1967,12 : 25- 32.
  • 10Tamura T, Sharer J. Power semigroups I Notice[J]. AMS, 1967,14 : 688- 692.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部