期刊文献+

基于Nie-Tan算法的区间二型模糊集质心计算:改变主变量采样个数 被引量:2

Nie-Tan Algorithms to Calculate the Centroids of Interval Type-2 Fuzzy Sets: With Varying the Sampling of Primary Variables
原文传递
导出
摘要 计算区间二型模糊集的质心(也称降型)是区间二型模糊逻辑系统中的一个重要模块。Karnik-Mendel(KM)迭代算法通常被认为是计算区间二型模糊集质心的标准算法。尽管如此,KM算法涉及复杂的计算过程,不利于实时应用。在各种改进类算法中,非迭代的Nie-Tan(NT)算法可节省计算消耗。此外,连续版本NT(CNT,continuous version of NT)算法被证明是计算质心的准确算法。本文比较了离散版本NT算法中求和运算和连续版本NT算法中求积分运算,通过四个计算机仿真例子证实了当适度增加区间二型模糊集主变量采样个数时,NT算法的计算结果可以精确地逼近CNT算法。 Calculating the centroids of interval type-2 fuzzy sets(also called type-reduction) is an important block in interval type-2 fuzzy logic systems. Karnik-Mendel algorithms are usually considered as the standard algorithms to calculate the centroids of interval type-2 fuzzy sets. However, the Karnik-Mendel algorithms involve complicated computations, which may not suitable for real applications. In the enhanced types of algorithms, the noniterative Nie-Tan(NT) algorithms can save the computational cost. Furthermore, the continuous version of Nie-Tan(CNT) algorithms are proved to be an accurate method for computing the centroids.This paper compares the sum operations in discrete version of NT algorithms and the integral operations in CNT algorithms. Four computer simulation examples are provided to verify that the computation results of NT algorithms can accurately approximate the CNT algorithms as the number of sampling of primary variables of interval type-2 fuzzy sets are increased appropriately.
作者 陈阳 王涛 CHEN Yang;WANG Tao(College of Science Liaoning University of Technology,Jinzhou 121001,China)
出处 《模糊系统与数学》 北大核心 2020年第2期93-101,共9页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(61973146,61773188,61803189) 辽宁省自然科学基金指导项目(20180550056)。
关键词 区间二型模糊集 质心 Nie-Tan算法 积分 逼近 计算机仿真 Interval Type-2 Fuzzy Set Centroid Nie-Tan Algorithms Integration Approximations Computer Simulation
  • 相关文献

参考文献6

二级参考文献164

  • 1陈薇,孙增圻.二型模糊系统研究与应用[J].模糊系统与数学,2005,19(1):126-135. 被引量:26
  • 2Wu H, Mende J. Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems[J]. IEEE Trans on Fuzzy Systems, 2002, 15(1): 622-639.
  • 3Coupland S, John B. Geometric type-1 and type-2 fuzzy logic systems[J]. IEEE Trans on Fuzzy Systems, 2007, 15(1): 3-15.
  • 4Dongrui W, Woei W. Computationally efficient typereduction strategies for a type-2 fuzzy logic controller[C]. Proc of the 14th IEEE Int Conf on Fuzzy Systems. Reno: IEEE, 2005: 353-358.
  • 5Melgarejo M. A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set[C]. Proc of North American Fuzzy Information Processing Society. San Diego, 2007: 190-194.
  • 6Karnik N N, Jerry M M. Centroid of a type-2 fuzzy set[J]. Information Sciences, 2001, 131(1): 195-220.
  • 7Dongrui Wu, Jerry M M. Enhanced Karnik-Mendel algorithms for interval type-2 fuzzy sets and systems[C]. Proc of North American Fuzzy Information Processing Society. San Diego, 2007: 184-189.
  • 8ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(13) 338-353. J.
  • 9OHN R I, COUPLAND S. Type-2 fuzzy logic: a historical view[J] IEEE Computational Intelligence Magazine, 2007, 2(1): 57 - 62.
  • 10MENDEL J M. Computing with words, when words can mean dif- ferent things to different people[C]//Proceedings of the International ICSC Symposium On Fuzzy Logic and Applications. Rochester, USA: IEEE, 1999:158 - 164.

共引文献30

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部