摘要
针对群体无人机编队飞行遭遇执行器故障的问题,提出一种基于分数阶理论的群体智能容错同步跟踪控制方法,提升了整体编队飞行的安全性.首先,对无人机数学模型进行变换,将其分解为外环位置子系统和内环姿态子系统;其次,利用分数阶理论和神经网络自适应控制策略,针对外环位置子系统设计群体无人机容错位置同步跟踪控制器;然后,利用从位置子系统同步跟踪控制信号解算出的理想姿态信号,构建内环姿态跟踪偏差,并再次结合分数阶理论和神经网络自适应控制策略,设计内环容错姿态控制信号;最后,通过仿真验证所设计控制方案的有效性.
This paper develops a fractional-order intelligent tracking control scheme for the UAV that is fault-tolerant,enables efficient synchronization,and swarms against actuator faults to achieve a safe formation flight.By dividing the UAV system into the outer position subsystem and the inner attitude subsystem,the UAV model is first transformed to facilitate the controller design.Then,based on the fractional-order theory and neural adaptive control strategy,a fault-tolerant position synchronization tracking controller is constructed for the outer position subsystem.Extracting the desired attitudes from the position synchronization tracking controller and utilizing the fractional-order theory and neural adaptive control strategy proved to be effective in the development of a faulttolerant attitude-tracking controller.Finally,our simulation results corroborated the effectiveness of the proposed control scheme.
作者
余自权
张友民
姜斌
YU ZiQuan;ZHANG YouMin;JIANG Bin(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;School of Automation,Northwestern Polytechnical University,Xi’an 710129,China;Department of Mechanical,Industrial and Aerospace Engineering,Concordia University,Montreal QC H3G 1M8,Canada)
出处
《中国科学:技术科学》
EI
CSCD
北大核心
2020年第4期389-402,共14页
Scientia Sinica(Technologica)
基金
国家自然科学基金重点项目(批准号:61833013)
国家自然科学基金面上项目(批准号:61573282)
加拿大自然科学基金项目资助。
关键词
群体智能
无人机
容错控制
分数阶控制
神经网络
intelligent swarms
unmanned aerial vehicle
fault-tolerant control
fractional-order control
neural networks