期刊文献+

具有多种平衡点类型的大范围混沌系统及其拓扑马蹄 被引量:2

A large range chaotic system with multiple types of equilibrium points and its topological horseshoe
下载PDF
导出
摘要 提出了一个新的三维混沌系统。通过调节系统中的参数,使系统在保持混沌动力学行为的同时分别具有多种类型的平衡点,即一个不稳定平衡点、无平衡点、无穷平衡点和一个稳定平衡点。此外,随着参数和初始值的变化,发现系统是一个大范围的混沌系统,且在无对称性条件下具有共存吸引子。分析了系统的基本动力学行为,包括系统的相图、Lyapunov指数谱和分岔图。利用拓扑马蹄理论和数值计算,找到了系统的拓扑马蹄,并获得拓扑熵,进一步从理论上证明系统的混沌特性。 A new three-dimensional chaotic system was proposed.By adjusting system parameters,the system may have multiple types of equilibrium points,such as an unstable equilibrium point,no equilibrium point,infinite equilibrium points and a stable equilibrium point,while maintaining its chaotic dynamical behaviors.In addition,with the change of parameters and initial values,it is found that the system is a large-scale chaotic system and has coexistence attractors under the condition of asymmetry.The system’s basic dynamic behaviors were analyzed by using the phase diagram,Lyapunov exponent spectrum and bifurcation diagram.By virtue of topological horseshoe theory and by means of numerical calculations,the system’s topological horseshoe and topological entropy were obtained,which further proves its chaotic characteristics in theory.
作者 徐昌彪 钟德 郭桃桃 XU Changbiao;ZHONG De;GUO Taotao(School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《振动与冲击》 EI CSCD 北大核心 2020年第9期235-241,247,共8页 Journal of Vibration and Shock
基金 国家自然科学基金青年科学基金(61602073)。
关键词 混沌系统 平衡点 大范围 拓扑马蹄 chaotic system equilibrium point large range topological horseshoe
  • 相关文献

参考文献8

二级参考文献173

  • 1盛利元,贾伟尧.一个截断误差诱导下的随机数字振荡系统[J].物理学报,2005,54(12):5574-5580. 被引量:10
  • 2石要武,戴逸松,丁宏.有色噪声背景下正弦信号频率估计的互谱Pisarenko和MUSIC方法[J].电子学报,1996,24(10):46-50. 被引量:42
  • 3金晨辉,杨阳.对自同步混沌密码的分割攻击方法[J].电子学报,2006,34(7):1337-1341. 被引量:11
  • 4王树和.微分方程模型与混沌[M].合肥:中国科学技术大学出版社,1999.489-450.
  • 5Smale S. Finding a horseshoe on the beaches of Rio. The Mathenmtical Intelligenzer, 1998, 20(1) : 39- 44.
  • 6Wiggins S. Global bifurcations and chaos: analytical meth- ods. New York: Springer- Verlag, 1988.
  • 7Robinson C. DynamicM systems: stability, symbolic dy- namics, and chaos. New York: CRC Press, 1999.
  • 8Morse M, G A Hedlund. Symbolic dynamics. American Journal of Mathematics, 1938,60 (4) : 815 - 866.
  • 9Zgliczynski P, M Gidea. Covering relations for multidimen- sional dynamical systems. Journal of Differential Equa- t/ons, 2004, 202 ( 1 ) : 32 - 58.
  • 10Szymczak A. The Conley index and symbolic dynamics. Topology, 1996, 35(2): 287-299.

共引文献112

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部