期刊文献+

车联网环境下基于模糊逻辑的交通拥堵检测方法 被引量:6

Traffic congestion detection method based on IoV and fuzzy logic
下载PDF
导出
摘要 针对现有的道路交通拥堵检测方法的不足,提出了一种基于V2V的道路交通拥堵检测方法。首先基于V2V的方式实时获取邻居车辆状态信息,建立车辆邻居表;其次依据车辆行驶速度、车流密度、交通拥堵评级体系构建模糊控制器,完成本地交通拥堵水平的估计;然后通过车车通信进行邻居车辆交通拥堵状况的查询,并根据大子样假设检验验证本地交通拥堵水平值,完成所在区域交通拥堵水平的检测;最后基于Veins平台搭建仿真测试场景,仿真对比了拥堵检测结果的准确率,同时测试车辆节点的退避时槽数量和接收广播数据包的数量。实验结果表明,提出的道路交通拥堵检测方法实现的拥堵检测准确率分别比线圈法和CoTEC法提高了5. 5%和7. 5%;提出的道路交通拥堵检测方法实现的车车通信网络拥塞比CoTEC法降低了90. 8%,并且在未发生交通拥堵时通信节点的通信负载显著降低。 Because of the drawback of existing method,the paper proposed a traffic congestion detection method based on Internet of Vehicles and fuzzy logic. Firstly,this method constructed a neighbor table of vehicle based on the obtained real-time information of neighbor vehicles. Secondly,it created a fuzzy controller according to the speed,traffic density and traffic congestion rating system,and evaluated the local traffic congestion level. Thirdly,it realized the inquiry of traffic congestion status of neighbor vehicles based on real-time communication between neighbor vehicles,and verified the local traffic congestion level based on large sub-sample hypothesis test,then completed the detection of regional traffic congestion level. Finally,it built a simulated test scenario based on Veins platform,then it compared the accuracy of detecting traffic congestion,and calculated the backoff slots and received broadcast packets of vehicle nodes in the simulated test scenario. The results show that the accuracy of traffic congestion detection of the proposed method is increased by 5. 5% and 7. 5% compared with "no trigger"method and CoTEC method,respectively. The proposed method reduces the network congestion of vehicle communication by 90. 8% compared with CoTEC method,and the communication load of communication nodes significantly decreases when there is no traffic congestion.
作者 王润民 刘丁贝 胡锦超 朱宇 徐志刚 Wang Runmin;Liu Dingbei;Hu Jinchao;Zhu Yu;Xu Zhigang(Joint Laboratory for Internet of Vehicles for Ministry of Education-China Mobile Communications Corporation,Chang’an University,Xi’an 710064,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第6期1830-1834,共5页 Application Research of Computers
基金 国家重点研发计划资助项目(2018YFB0105104) 陕西省重点研发计划资助项目(2018ZDCXL-GY-05-02) 国家教育部联合实验室建设项目(教技司(2016)477号) 中央高校基本科研业务费资助项目(300102248105)。
关键词 车联网 车车通信 拥堵检测 速度 车流密度 模糊逻辑 Internet of Vehicles(IoV) vehicle communication congestion detection speed traffic density fuzzy logic
  • 相关文献

参考文献5

二级参考文献36

  • 1方琴,李永前.K近邻短期交通流预测[J].重庆交通大学学报(自然科学版),2012,31(4):828-831. 被引量:13
  • 2马万经,聂磊,杨晓光.单点定时信号最优控制模型及仿真分析[J].系统仿真学报,2007,19(19):4543-4547. 被引量:13
  • 3PATTARAATIKOMW,PONGPAIBOOLP,THAJCHAYAPONGS.Estimatingroadtrafficcongestionusingvehiclevelocity[C]//Procofthe6thInternationalConferenceonITSTelecommunicationsProceedings.2006:1001-1004.
  • 4DORNBUSHS,JOSHIA.StreetSmarttraffic:discoveringanddisseminatingautomobilecongestionusingVANETs[C]//Procofthe65thVehicularTechnologyConference.Dublin:Spring,2007:11-15.
  • 5MARFIAG,ROCCETTIM.Vehicularcongestiondetectionandshorttermforecasting:anewmodelwithresults[J].IEEETransonVehicularTechnology,2011,60(7):2936-2948.
  • 6MANDALK,SENA,CHARKRABORTYA,etal.RoadtrafficcongestionmonitoringandmeasurementusingactiveRFIDandGSMtechnology[C]//ProcofInternationalIEEE ConferenceonIntelligentTransportationSystems.2011:1375-1379.
  • 7LAKASA,CHEQFAHM.Detectionanddissipationofroadtrafficcongestionusingvehicularcommunication[C]//ProcofInternationalConferenceonMicrowaveSymposium.2009:1-6.
  • 8FAHMYM F,RANASINGHEDN.DiscoveringautomobilecongestionandvolumeusingVANETs[C]//Procofthe8thInternationalConferenceonITSTelecommunications.2008:367-372.
  • 9MOHANDASBK,LISCANOR,YANGOW W.VehicletrafficcongestionmanagementinvehicularAdhocnetworks[C]//Procofthe34thIEEE InternationalConferenceonLocalComputerNetworks.2009:655-660.
  • 10LEONTIADISI,MARFIAG,MACKD,etal.Ontheeffectivenessofanopportunistictrafficmanagementsystem forvehicularnetworks[J].IEEETransonIntelligentTransportationSystems,2011,12(4):1537-1548.

共引文献69

同被引文献55

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部