期刊文献+

基于GA-BP神经网络的机床主轴刚度预测研究 被引量:1

Research on Prediction of Machine Tool Spindle Stiffness Based on GA-BP Neural Network
下载PDF
导出
摘要 提出一种基于遗传算法(GA)优化的BP神经网络的机床主轴刚度预测模型,以主轴悬伸量、前后轴承间距、主轴当量外径、前轴承径向刚度、后轴承径向刚度为输入,以主轴末端刚度为输出,训练神经网络,可以预测主轴刚度。研究表明,经过遗传算法优化的BP神经网络模型较未经遗传算法优化的BP神经网络模型而言,拥有较高的预测精度。 A prediction model of machine tool spindle stiffness based on BP neural network optimized by genetic algorithm(GA)is proposed. The main spindle stiffness can be predicted by training neural network. The main spindle overhang,front and rear bearing spacing, equivalent outer diameter of main spindle, radial stiffness of front and rear bearing are taken as input, and the end stiffness of main spindle is taken as output.The research shows that the BP neural network model optimized by genetic algorithm has higher prediction accuracy than the BP neural network model that are not optimized by genetic algorithm.
作者 田祎轩 杨庆东 TIAN Yixuan;YANG Qingdong(School of Mechanical and Electrical Engineering,Beijing Information Science&Technology University,Beijing 100192,China)
出处 《机械工程师》 2020年第5期11-13,共3页 Mechanical Engineer
关键词 机床主轴 刚度 遗传算法 BP神经网络 machine tool spindle stiffness genetic algorithm BP neural network
  • 相关文献

参考文献7

二级参考文献34

共引文献38

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部