期刊文献+

光控晶闸管正向过电压自保护机理研究

Research on Forward Overvoltage Self-protection Mechanism of Light-triggered Thyristor
下载PDF
导出
摘要 介绍了新型光控晶闸管(LTT)内部集成的一项非常重要的电气功能,即正向过电压自保护功能。通过在LTT光敏区内集成转折二极管(BOD),实现LTT正向过电压自保护功能。如果集成BOD转折电压太高,则不能有效保护晶闸管;如果集成BOD转折电压太低,则达不到LTT设计的阻断电压要求。这里通过计算机仿真技术和工艺实验验证的方法,成功揭示了LTT内部集成的正向过电压结构机理与硅单晶材料电阻率、PN结结构尺寸和温度的关系,从而精确设计和制造了LTT内部的转折电压,成功研制了5英寸3125 A/7600 V特高压LTT,并成功应用于"云南-广东±800 kV/5000 MW"特高压直流输电工程。 A new type of light-triggered thyristor(LTT)is proposed which integrates a very important electrical function,namely forward overvoltage self-protection function.By integrating the break-over diode(BOD)in the LTT’s sensitive region,it can achieve the forward over-voltage self-protection function of LTT.If the break-over voltage of the integrated BOD is too high,it can not protect the thyristor effectively.If the break-over voltage of the integrated BOD is too low,it can not reach the blocking voltage design requirements of the LTT.By using computer simulation technology and process experimental methods,the relationship between forward overvoltage structure mechanism integated in LTT and resistivity of silicon material,size and structure of the PN junction and temperature is revealed successfully,and the break-over voltage of LTT is designed accurately,a 5 inch 3125 A/7600 V ultra high voltage LTT is successfully developed,and is successfully applied in"Yunnan-Guangdong±800 kV/5000 MW"ultra high voltage direct current transmission project.
作者 武霁阳 郝菁菁 崔春艳 彭光强 WU Ji-yang;HAO Jing-jing;CUI Chun-yan;PENG Guang-qiang(Maintenance and Test Center of CSG EHV Power Transmission Company of China Southern Power Grid Co.,Ltd.,Guangzhou 510633,China;不详)
出处 《电力电子技术》 CSCD 北大核心 2020年第5期133-135,140,共4页 Power Electronics
关键词 光控晶闸管 转折二极管 正向过电压 自保护 light-triggered thyristor break-over diode forward overvoltage self-protection
  • 相关文献

参考文献2

二级参考文献12

  • 1[1]Dorn J, Kellner U, Niedernostheide F J, Schultze H J. State of the Art Light Triggered Thyristor with Integrated Protection Functions [ J ]. Power Electronics Europe,2002(2) :29~35.
  • 2[2]Niedernostheide F J, Schulze H J, Kellner-Werdehausen U. Self-protected High Power Thyristor [ C]. PCIM '2001, Power Conversion( Nurnberg Germany), 2001: 51 ~56.
  • 3[3]Henselek A. Maschinenkonzepte fur die Industrielle Anwendung yon Elektromagnetischer Umformung[J ]. Klloquium Elektromagnetische Umformung, 2001 (5): 39 ~44.
  • 4[1]Guo W L, Niu P J, Liang H L, et al. Study on resonant tunneling diode. 2001.6th International Conference on Solid-State and Integrated Circuit Technology Proceedings, 2001;2:1 403~1 405
  • 5[2]Wu J S, Chang C T, Lee C P, et al. Origin of enhancement of negative differential resistance at low temperatures in double-barrier resonant tunneling structures. IEEE Electron Device Letters, 1989;10(7):301~303
  • 6[3]Masahiro T, Hiroyuki S, Junji Y, et al. Room temperature observation of differential negative resistance in an AlAs/GaAs/AlAs resonaut tunneling diode. Japanese Journal of Applied Physics, 1985;24(6):L466-L468
  • 7[4]Masahiro T, Hiroyuki S. Precise control of resonant tunneling current in AlAs/GaAs/AlAs double barrier diode with atomically-controlled barrier widths. Japanese Journal of Applied Physics, 1986; 25(3):L185~L187.
  • 8[5]Sen S,Capasso F, Sivco D, et al. New resonant-tunneling devices with maltiple negative resistance regions and high room-temperature peak-to-valley ratio. IEEE Electron Device Letters, 1988;9(8):402~404
  • 9[6]Shimizu N,Nagatsuma T, Shinagawa M, et al. Picosecond-switching time of In0.53Ga0.47As/AlAs resonant-tunneling diodes measured by electro-optic sampling technique, IEEE Electron Device Letters, 1995;16(6):262~264
  • 10[7]Chow D H, Schulman J N, zbay E, et al. Investigation of In0.53Ga0.47As/AlAs resonant tunneling diodes for high speed switching. Appl Phys Lett,1992;61(14):1 685~1 687

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部