期刊文献+

基于ORB算法和改进KNN-RANSAC算法的无人机遥感影像拼接 被引量:4

UAV remote sensing image stitching based on ORB algorithm and improved KNN-RANSAC algorithm
下载PDF
导出
摘要 根据无人机遥感影像自身的特点,提出了一种基于ORB算法和改进KNN-RANSAC算法的无人机遥感影像拼接。该算法首先通过ORB算法对特征点进行提取,然后利用改进的KNN-RANSAC算法进行特征匹配,最后使用加权融合算法对图像进行融合拼接。实验结果表明,ORB算法和改进的KNN-RANSAC算法在保证匹配精度的前提下,提高了匹配速度,有利于无人机遥感影像的拼接。 According to the characteristics of UAV remote sensing image,a UAV remote sensing image mosaic based on ORB algorithm and improved KNN-RANSAC algorithm is proposed. Firstly,the feature points are extracted by the ORB algorithm,then the improved KNN-RANSAC algorithm is used for feature matching. Finally,the image is fused and stitched by the weighted fusion algorithm.The experiment results show that the ORB algorithm and the improved KNN-RANSAC algorithm increase the matching speed by ensuring the matching accuracy,which is beneficial to the splicing of remote sensing images of UAVs.
作者 朱军桃 龚朝飞 赵苗兴 王雷 冯立朋 ZHU Jun-tao;GONG Chao-fei;ZHAO Miao-xing;WANG Lei;FENG Li-peng(College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541006,China;Guangxi Key Laboratory of Spatial Information and Geomatics,Guilin University of Technology,Guilin 541006,China;South Surveying and Mapping Technology Co.Ltd,Guangzhou 510700,China)
出处 《桂林理工大学学报》 CAS 北大核心 2020年第1期131-137,共7页 Journal of Guilin University of Technology
基金 国家自然科学基金项目(41461089)。
关键词 无人机遥感 ORB算法 改进KNN-RANSAC算法 影像拼接 UAV remote sensing ORB algorithm improved KNN-RANSAC algorithm image stitching
  • 相关文献

参考文献10

二级参考文献84

  • 1苏丽颖,李小鹏,么立双.一种改进的SIFT特征提取新算法[J].华中科技大学学报(自然科学版),2013,41(S1):396-398. 被引量:5
  • 2ARMBRUST M, FOX A, GRIFFITH R, et al. A view of cloud computing [J]. Communications of the ACM, 2010, 53(4): 50-58.
  • 3CHANG F, DEAN J, GHEMAWAT S, et al. Bigtable: a distributed storage system for structured data [J]. ACM Transactions on Computer Systems, 2008, 26(2): 1-26.
  • 4DECANDIA G, HASTORUN D, JAMPANI M, et al. Dynamo: Amazon's highly available key-value store [C] // Proceedings of the 21st ACM Symposium on Operating Systems Principles. New York: ACM Press, 2007: 205-220.
  • 5LASKHMAN A, MALIK P. Cassandra: a decentralized structured storage system[J]. ACM SIGOPS Operating Systems Review, 2010, 44(2): 35-40.
  • 6CARSTOIU D, CERNIAN A, OLTEANU A. Hadoop HBase-0.20.2 performance evaluation[C] // Proceedings of the 4th International Conference on New Trends in Information Science and Service Science. Piscataway: IEEE Press, 2010: 84-87.
  • 7FRANKE C, MORIN S, CHEBOTKO A, et al. Distributed semantic Web data management in HBase and MySQL cluster [C] // Proceedings of the 2011 IEEE International Conference on Cloud Computing. Piscataway: IEEE Press, 2011: 105-112.
  • 8DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters [C] // Proceedings of the 6th Symposium on Operating System Design and Implementation. Berkeley: USENIX, 2004: 137-150.
  • 9AGUILERA M K, GOLAB W, SHAH M A. A practical scalable distributed B-tree [J]. Proceedings of the VLDB Endowment, 2008, 1(1): 598-609.
  • 10WU S, JIANG D, OOI B C, et al. Efficient B-tree based indexing for cloud data processing[J]. Proceedings of the VLDB Endowment, 2010, 3(1/2): 1207-1218.

共引文献121

同被引文献41

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部