期刊文献+

深圳大气PM2.5中水溶性有机物的来源特征 被引量:1

Source apportionment of water-soluble organic matter in PM2.5 in Shenzhen
下载PDF
导出
摘要 对2017年9月~2018年8月深圳市北部大气PM2.5中水溶性有机物(WSOM)的质量浓度、质谱及来源结构进行测量和分析.结果表明:PM2.5的质量浓度为(32.3±18.4)μg/m^3,WSOM的质量浓度为(9.4±5.7)μg/m^3,占颗粒物总有机物的(77.6%±14.0%).质谱分析显示,WSOM的氧碳比(O/C)平均值达到(0.57±0.09),属于二次有机物的O/C值范围,且生物质燃烧排放的离子碎片C2H4O^2+的丰度显著,说明WSOM的来源中有显著的生物质燃烧排放的有机气溶胶.为了明确WSOM的来源结构,利用正矩阵因子分解法(PMF)模型进行来源解析,发现3个合理因子:高氧化态有机气溶胶(MO-OOA),低氧化态有机气溶胶(LO-OOA)和生物质燃烧(BBOA),贡献比例分别为51.7%,31.8%和16.5%.MO-OOA和BBOA贡献浓度均呈现秋冬高、春夏低的季节变化特征,反向轨迹分析显示其与内陆污染传输关系密切.LO-OOA的变化相对稳定,本地源的贡献较大.结合14C同位素示踪法对秋冬季WSOM样品分析,发现机动车等化石源二次有机物是WSOM的主要来源,贡献比例达到53.9%,需继续加强对化石燃料控制来降低WSOM污染. This study systematically analyzed the Water-Soluble Organic matter(WSOM)in PM2.5 collected during September 2017 to August 2018 in the northernzone in Shenzhen.The mass concentration,mass spectraand sources of WSOM were obtained.The average mass concentration of PM2.5 was(32.3±18.4)μg/m^3.WSOM was determined to be 77.6%±14.0%of the organic matter(OM),with anaverage mass concentration of(9.4±5.7)μg/m^3.As shown in the mass spectrometry,the average O/C ratio of WSOM was 0.57±0.99,which was within thetypical range ofthe O/C valuesof SOA.Meanwhile,the abundant C2H4O^2+proved that biomass burning organic aerosol(BBOA)contributed significantly to the WSOM.Furthermore,positive matrix factorization(PMF)model was applied to perform source apportionment of WSOM and three reasonable factors were identified,including BBOA,more oxidized oxygenated OA(MO-OOA)and less oxidized oxygenated OA(LO-OOA),accounting for 16.5%,51.7%and 31.8%,respectively.Compared to spring and summer,BBOA and MO-OOAcontributed more in autumn and winter,which was more closely related to inland pollution transport based on backward trajectory analysis.Thelittle variation of LO-OOA in different air masses possibly impliedits local sources.14C measurement was conducted to help separate fossil and non-fossil emissions of WSOM,and the fossil fuel-derived secondary organic matterwas found to dominate the WSOM mass(53.9%).Therefore,it’s necessary to strengthen the control of fossil fuel sources in order to reduce WSOM pollution.
作者 孙逸飞 李孟林 江家豪 戴静 高茂尚 黄晓锋 何凌燕 SUN Yi-fei;LI Meng-lin;JIANG Jia-hao;DAI Jing;GAOMao-shang;HUANG Xiao-feng;HE Ling-yan(Key Laboratory of Urban Human Residential Environmental Science and Technology,Shenzhen Graduate School,Peking University,Shenzhen 518055,China)
出处 《中国环境科学》 EI CAS CSCD 北大核心 2020年第5期1869-1876,共8页 China Environmental Science
基金 国家自然科学基金资助项目(91744202) 深圳市科技计划资助项目(JCYJ20170306164713148)。
关键词 水溶性有机物(WSOM) 正矩阵因子分解法(PMF) 14C同位素 来源分析 water-soluble organic matter(WSOM) positive matrix factorization(PMF) 14C measurement source apportionment
  • 相关文献

参考文献7

二级参考文献66

  • 1郭之虞,李坤,陈铁梅,陈佳洱.加速器质谱计的原理、技术及其进展[J].原子能科学技术,1989,23(6):76-80. 被引量:8
  • 2邵敏,李金龙,唐孝炎.AMS方法在大气气溶胶来源研究中的应用[J].环境科学学报,1996,16(2):130-141. 被引量:9
  • 3邵敏,李金龙,唐孝炎,汪建军,郭之虞,刘克新,鲁向阳,李斌,李坤.大气气溶胶含碳组分的来源研究──加速器质谱法[J].核化学与放射化学,1996,18(4):234-238. 被引量:8
  • 4Carlton AG, Wiedinmyer C, Kroll JH. A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos Chem Phys, 2009, 9: 4987-5005.
  • 5Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, Decarlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea EJ, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Hemdon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsno p DR. Evolution of organic aerosols in the atmosphere. Science, 2009, 326:1525-1529.
  • 6Gray HA, Cass GR, Huntzicker JJ, Heyerdahl EK, Ran JA. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environ Sci Technol, 1986, 20:580-589.
  • 7Turpin B J, Huntzicker JJ. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ, 1995, 29:3527-3544.
  • 8Chow JC, Watson JG, Lu ZQ, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SIVAQS/AUSPEX. Atmos Environ, 1996, 30:2079-2112.
  • 9Castro LM, Harrison RM, Smith DJT. Carbonaceous aerosol in urban and rural european atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ, 1999, 33:2771-2781.
  • 10Schauer J J, Rogge WF, Hildemann LM, Mazurek MA, Cass GR. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ, 1996, 30:3837-3855.

共引文献36

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部