期刊文献+

基于自适应Siamese网络的无人机目标跟踪算法 被引量:18

Adaptive Siamese network based UAV target tracking algorithm
原文传递
导出
摘要 无人机已被广泛应用到军事和民用领域,目标跟踪是无人机应用的关键技术之一。针对无人机跟踪过程中目标易发生形变、遮挡等问题,提出一种基于自适应Siamese网络的无人机目标跟踪算法。首先,利用2个卷积网络构建一个5层Siamese网络,通过对模板特征与当前帧图像特征进行卷积得到目标位置;其次,利用高斯混合模型对以往的预测结果进行建模并建立目标模板库;然后,从模板库中挑选出最可靠的目标模板并以此更新Siamese网络的匹配模板,使Siamese网络能够自适应目标的外观变化;最后,引入回归模型进一步精确目标位置,降低背景对网络性能的影响。仿真实验结果表明:该算法有效降低了形变、遮挡等情况对跟踪性能的影响,具有较高的准确率。 UAVs have been widely used in military and civilian applications.Target tracking is one of the key technologies for UAV applications.Aiming at the problem that the target is prone to deformation and occlusion during the tracking process of the UAV,a target tracking algorithm for UAV based on adaptive Siamese network is proposed.Firstly,using two convolution networks,a 5-layer Siamese network is constructed.The target location is obtained by convolving the template features with the current frame image features.Secondly,the Gaussian mixture model is used to model the previous prediction results and establish the target template library.Thirdly,the most reliable target template is selected from the template library to update the matching template of the Siamese network,so that the Siamese network can adapt to the target.Finally,a regression model is introduced to further pinpoint the target location and reduce the impact of background on network performance.The results show that the algorithm effectively reduces the influence of deformation and occlusion on tracking performance and are highly accurate.
作者 刘芳 杨安喆 吴志威 LIU Fang;YANG Anzhe;WU Zhiwei(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2020年第1期243-255,共13页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61171119)。
关键词 无人机 目标跟踪 Siamese网络 模板匹配 自适应更新 UAV target tracking Siamese network template matching adaptive update
  • 相关文献

参考文献3

二级参考文献95

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2董国忠,王省书,胡春生.无人机的应用及发展趋势[J].国防科技,2006,27(10):34-38. 被引量:13
  • 3李远宁,刘汀,蒋树强,黄庆明.基于“bag of words”的视频匹配方法[J].通信学报,2007,28(12):147-151. 被引量:10
  • 4Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. Hilton Head Island, SC: IEEE, 2000. 142-149.
  • 5Risfic B, Arulampalam S, Gordon N. Beyond the Kalman filter-book review. IEEE Aerospace and EJectronic Systems Magazine, 2004, 19(7): 37-38.
  • 6Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Hawaii, USA: IEEE, 2001.1-511-I-518.
  • 7Perez P, Hue C, Vermaak J, Gangnet M. Color-based prob- abilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 661-675.
  • 8Possegger H, Mauthner T, Bischof H. In defense of color- based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120.
  • 9Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adap- tive color attributes for real-time visual tracking. In: Pro- ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097.
  • 10Ojala T, Pietikainen M, Harwood D. Performance evalua- tion of texture measures with classification based on Kull- back discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Processing. Jerusalem: IEEE, 1994. 582-585.

共引文献110

同被引文献81

引证文献18

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部