摘要
针对现有的室内定位方法精度低、需要额外信号节点等问题,提出了一种基于萤火虫算法(FA)优化粒子滤波的行人航位推算(PDR)融合地磁匹配的室内定位方法。相比于传统PDR算法,采用有限状态机法检测步频,在保证跨步检测准确度的同时显著降低计算量。利用萤火虫算法优化粒子滤波的采样过程,在粒子权值更新前向似然度更高的区域移动,提升了滤波精度。实验结果表明:该算法能有效提升定位精度,具有重要的实用价值。
Aiming at the problem of low accuracy and require additional signal nodes of existing indoor localization methods,an indoor positioning method,which fuses PDR and geomagnetic matching based on firefly algorithm(FA) optimized particle filtering. is proposed Compared to the traditional PDR algorithm,using finite state machine method to detect stride frequency,and the calculation amount is significantly reduced while ensuring the accuracy of the step detection. The firefly algorithm is used to optimize the sampling process of particle filtering,which makes the particles moving to the region with higher likelihood before weight updating,and the filtering precision is improved. The experimental result shows that the proposed algorithm can effectively improve the positioning precision and has important practical value.
作者
徐德昌
蔡成林
邱云翔
XU Dechang;CAI Chenglin;QIU Yunxiang(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;School of Information Engineering,Xiangtan University,Xiangtan 411100,China)
出处
《传感器与微系统》
CSCD
2020年第6期151-153,157,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61771150)
广西重点研发计划资助项目(桂科AB17129028)
湖南省科技创新计划资助项目(2018GK2014)
桂林电子科技大学研究生教育创新计划资助项目(2017YJCX38)。
关键词
室内定位
萤火虫算法
粒子滤波
有限状态机
indoor localization
firefly algorithm(FA)
particle filtering
finite state machine