期刊文献+

基于BP算法的前馈神经网络超声诊断方法的研究

Study on ultrasound diagnostic method of feedforward neural network on the basis of BP algorithm
下载PDF
导出
摘要 目的:研制一套提升超声诊断水平的神经网络超声诊断软件系统,以提高超声诊断效率和降低诊断误判率。方法:基于神经网络理论设计误差反向传播(BP)算法的前馈神经网络结构,通过数据库累积超声专家的诊断知识对超声诊断图像进行特征提取,利用完成分类的超声图像数据,训练神经网络以获取网络权重,将目标超声图像导入神经网络得到诊断分类。结果:将患者肝部超声图像导入系统,在病理特征不明显情况下,诊断系统仍可快速做出诊断分类,并给出置信区间,辅助医师进行诊断。超声辅助诊断系统的诊断时间由通常的10 min左右降低至2 min左右,缩短了患者的就诊时间。结论:通过临床测试,系统不仅可以提高超声诊断效率、降低就诊时间,而且可通过专家知识库实现专家知识共享,提高患者疾病诊断的准确率。 Objective:To develop a software system of ultrasound diagnosis of neural network that could improve the ultrasound diagnosis level,so as to enhance diagnostic efficiency and reduce rate of misdiagnosis.Methods:Firstly,the structure of feedforward neural network of error back propagation(BP)athigrathm was designed on the basis of neutral network theory.Secondly,feature extractions for images of ultrasound diagnosis were implemented through the diagnostic knowledge of accumulation ultrasound specialists of data base.Thirdly,the data of ultrasonic images that were used to complete classification were used to train neural network so as to obtain weight of network,and to import ultrasonoscopy of targets in neural network so as to obtain diagnostic classification.Results:After the color ultrasonic images of patients’liver were imported into system,the diagnostic system still could quickly make the diagnosis classification,and provide confidence interval and implement diagnosis to assist physicians under the conditions that pathological characteristics were not obvious.And the diagnostic time of ultrasonically auxilliary diagnosis system were reduced from routine 10 min to 2 min,and it shortened the clinical time of patients.Conclusion:The results of clinical test indicate that the system can not only improve the efficiency of ultrasonic diagnosis and reduce the clinical time,but also can realize sharing of experts’knowledge and improve the diagnostic accuracy rate for disease of patients through expert knowledge base.
作者 毛杰 冷晓妍 李丹丹 李琳 董来君 MAOJie;LENG Xiao-yan;LI Dan-dan(Color Ultrasonic Room,Qingdao Chenyang People’s Hospital,Qingdao 266109,China;不详)
出处 《中国医学装备》 2020年第5期64-66,共3页 China Medical Equipment
关键词 BP算法 前馈神经网络 彩超诊断 数据库 特征提取 BP algorithm Feedforward neural network Color Doppler ultrasound diagnosis Database Image feature extractions
  • 相关文献

参考文献4

二级参考文献26

  • 1William G Baxt.Applieation of artificial neural networks to clinical medicine [J] .The Lancet, 1995, 346: 1135- 1138.
  • 2William G. Baxt. Use of an artificial neural network for the diagnosis of myocardial infarction [J] .Annals of Internal Medicine, 1991, 115:843 - 848.
  • 3Guido Schwarzer, et al.On the misuse of artificial neural networks for prognostic and diagnostic classification in oncology [J] .Statistics inmedicine, 2000, 19:541-561.
  • 4Pitas I, Venetsanopoulos A N. Nonlinear digital filters: Principles and applications[M]. Kluwer Academic Publishers, January 1990.(ISBN-0-7923-9049-0 ), also reprinted in Taiwan of China, 1993:416.
  • 5Lee Y H. Generalized median filtering and related nonlinear filtering technique[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (3) :672 ~ 683.
  • 6Kaoru Arakawa. Median filter based on fuzzy rules and its application to image restoration[J]. Fuzzy Sets and Systems, 1996,77:3 ~ 13.
  • 7陈守平,董瑞,罗晓莉.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社.2010.
  • 8龙辉,戚文艳.MATLAB遗传算法工具箱及应用[M].西安:西安电子科枝大学出版社,2004.
  • 9钟志芳.MATLAB神经网络设计与应用[M].北京:清华大学出版社,2013.
  • 10张敏敏,金震东,蔡哲元,余建国,李兆申.计算机辅助判别超声内镜图像诊断胰腺癌的实验研究[J].中华消化内镜杂志,2009,26(4):180-183. 被引量:10

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部