摘要
牵引系统为高速列车的重要组成部分,其可靠性对列车安全运行至关重要.本文利用牵引系统传感器数据,提出了一种最优的数据驱动故障检测与诊断(fault detection and diagnosis, FDD)方法,用于解决动态牵引系统的故障诊断问题.首先,基于传感器数据构建系统模型,用于描述牵引系统动态.然后,通过相关性与子系统辨识技术,定义残差生成器以及故障检测统计量.而后根据改进的支持向量机(support vector machine, SVM),研究了最优的数据驱动故障诊断问题.最后,通过中车株洲电力机车研究所有限公司的高速列车实验平台,验证了所提出方法的合理性与有效性.
Traction systems are an important aspect of high-speed trains, and their reliable operation is crucial.With data available from trains, this paper proposes an optimal fault detection and diagnosis(FDD) strategy for dynamic traction systems. Based on the established dynamic model, using sensor measurements, a correlationaided subspace identification technique is proposed to formulate residual signals and corresponding test statistics for fault detection. Then, a modified support vector machine(SVM) is designed for optimally solving the diagnosis bias caused by the difference in the apparent probabilities of multiple fault scenarios. The feasibility and effectiveness of the proposed optical FDD performance are illustrated in the CRRC experimental platforms.
作者
姜斌
陈宏田
易辉
陆宁云
Bin JIANG;Hongtian CHEN;Hui YI;Ningyun LU(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Jiangsu Key Laboratory of Internet of Things and Control Technologies,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Department of Chemical and Materials Engineering,University of Alberta,Edmonton T6G 1H9,Canada;College of Electrical Engineering and Control Science,Nanjing Tech University,Nanjing 211816,China)
出处
《中国科学:信息科学》
CSCD
北大核心
2020年第4期496-510,共15页
Scientia Sinica(Informationis)
基金
国家自然科学基金(批准号:61490703,61922042)资助项目。
关键词
高速列车
牵引系统
数据驱动
故障诊断
high-speed trains
traction systems
data-driven
fault detection and diagnosis
FDD