期刊文献+

基于卷积神经网络的直肠癌靶区及危及器官自动勾画 被引量:7

Automatic delineation of rectal cancer target volume and organs at risk based on convolutional neural network
原文传递
导出
摘要 目的实现直肠癌靶区和正常组织的自动勾画,提高临床工作效率。方法采用基于卷积神经网络的深度学习方法,架构神经网络,学习并实现自动勾画,比较自动勾画与人工勾画的差异。结果210例直肠癌患者随机分组为190例训练集,20例验证集。测量单个患者完整勾画耗时约10s,CTV的平均Dice为0.87±0.04,其余正常组织的平均Dice均>0.8,CTV的HD指数为25.33±16.05,MDA指数为3.07±1.49,JSC指数为0.77±0.07。结论使用基于全卷积神经网络的深度学习方法可以实现直肠癌靶区的自动勾画,提高工作效率。 Objective To realize automatic delineation of rectal cancer target volume and normal tissues and improve clinical work efficiency.Methods The deep learning method based on convolutional neural network was adopted to construct neural network,learn and realize automatic delineation,and compare the differences between automatic delineation and manual delineation.Results Two hundred and ten cases with rectal cancer were randomly assigned to a training set of 190 and a validation set of 20.The complete delineation of a single case took about 10s;the average Dice of CTV was 0.87±0.04;the average Dice of other normal tissues was bigger than 0.8;the Hausdorff distance(HD)index of CTV was 25.33±16.05;the mean distance to agreement(MDA)index was 3.07±1.49,and the Jaccard similarity coefficient(JSC)index was 0.77±0.07.Conclusion The deep learning method based on full convolutional neural network can realize the automatic delineation of rectal cancer target volume and improve work efficiency.
作者 夏祥 王佳舟 杨立峰 章真 胡伟刚 Xia Xiang;Wang Jiazhou;Yang Lifeng;Zhang Zhen;Hu Weigang(Department of Radiotherapy,Cancer Hospital,Fudan University,Department of Oncology,Shanghai Medical College,Fudan University,Shanghai 200032,China)
出处 《中华放射肿瘤学杂志》 CSCD 北大核心 2020年第5期374-377,共4页 Chinese Journal of Radiation Oncology
关键词 自动勾画 全卷积神经网络 直肠癌 Automatic delineation Full convolutional neural networks Rectal cancer
  • 相关文献

参考文献2

二级参考文献13

  • 1Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for precise conformal radiotherapy [ J] .Int J Radiat Oncol Biol Phys, 2003,56 ( 1 ) : 89-105. DOI : 10.1016/S0360-3016 ( 03 ) 00090-7.
  • 2Geets X, Dalsne JF, Areangeli S, et al. Inter-observer variability in the delineation of pharyngeal-laryngeal tumour,parotid glands and cervical spinal cord: comparison between CT-scan and MRI [J]. Radiother Oncol, 2005,77 ( 1 ) : 25-31. DOI: 10. 1016/j. radonc. 2005.04.010.
  • 3Fiorino C, Reni M, Bolognesi A, et al. Intra-and interobserver variability in contouring prostate and seminal vesicles:implications for conformal treatment planning [J]. Radiother Oncol, 1998,47 (3) :285-292.DOI : 10.1016/S0167-8140(98) 0021-8.
  • 4Sim R,Isambert A, Gregoire V, et al. A pre-clinical assessment of an atlas-based automatic segmention tool for the head and neck [J]. Radiother Oncol, 2009, 93 ( 3 ) : 474-478. DOI: 10. 1016/j. radonc.2009.08.013.
  • 5Zijdenbos AP, Dawant BM, Margolin RA, et al. Morphometric analysis of white matter lesions in MR images: method and validation [ J] .IEEE Trans Med Imaging, 1994, 13 ( 4 ) : 716-724. DOI : 10.1109/42.363096.
  • 6Zhang L, Garden AS, Lo J-, et al. Muhiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy [ J ]. Int J Radiat Oncol Biol Phys, 2006, 64 ( 5 ) : 1559-1569.DOI : 10. l O16/j.ijrobp,2005.12.023.
  • 7Wang X, Lu j, Xiong X, et al. Anatomic and dosimetric changes during the treatment course of intensity-modulated radiotherapy for locally advanced nasopharyngeal carcinoma [ J ].Med Dosim,2010, 35(2) : 151-157.DOI: 10.1016/j.meddos.2009.06.007.
  • 8Hansen EK, Bucci MK, Quivey JM, et al. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer [J] .Int J Radiat Oncol Biol Phys,2006,64(2) :355-362.DOI:10. 1016/j. ijrobp.2005.07.957.
  • 9Reed VK, Woodward WA, Zhang L, et al. Automatic segmentation of whole-breast using atlas approach and deformable imagereglstration [ J ].Int J Radiat Oncol Bio Phys, 2009,73 ( 5 ) : 1493-1500.DOI: 10.1016/j.ijrobp.2008.07.001.
  • 10Chao KSC, Bhide S, Chen H, et al. Reduce in variation and improve efficiency of target volume delineation by a computer- assisted system using a deformable image registration approach [J] .Int J Radiat Oncol Bid Phys,2007,68(5) : 1512-1521.DOI: 10.1016/j.ijrobp.2007.04.037.

共引文献45

同被引文献39

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部